Prove that tan A + tan B / cot A + cot B = Tan A tan B
Answers
Answered by
2
(tan A+tan B) / (cot A+cot B)
⇒(tan A+tan B) / (1/tan A+1/tan B)
⇒(tan A +tan B) / (tan A+tan B / tan A·tan B)
⇒(tan A+tan B) / (tan A·tan B / tan A+tan B)
⇒tan A ·tan B
hence proved
⇒(tan A+tan B) / (1/tan A+1/tan B)
⇒(tan A +tan B) / (tan A+tan B / tan A·tan B)
⇒(tan A+tan B) / (tan A·tan B / tan A+tan B)
⇒tan A ·tan B
hence proved
Similar questions