Math, asked by aartilathia, 11 months ago

Prove that tan cube theta divided by one plus tan squared theta plus Cot cube theta divided by one plus Cot Square theta is equals two sec theta into course sec theta -2 sine theta cos theta.

Answers

Answered by generalsuraj1101
0

Answer:

Step-by-step explanation:

To proved , [tan³∅/(1 +tan²∅)]+[cot³∅(1+cot²∅)]=sec∅cosec∅ - 2sin∅2cos∅

LHS:-

[tan³∅/(1+tan²∅)]+[cot³∅/(1+cot²∅)] = [tan³∅/sec²∅]+[cot³∅/cosec²∅]

                                         = [(sin³∅/cos³∅)/(1/cos²∅)]+[(cos³∅/sin³∅)/[1/sin²∅]

                                         =[sin³∅/cos∅]+[cos³∅/sin∅]

                                         =[sin⁴∅ + cos⁴∅]/[sin∅ cos∅]

                                         =[(sin²∅+cos²∅)²-2 sin²∅ cos²∅]/[sin∅ cos∅]

                                         =[1²-2 sin²∅ cos²∅]/[sin∅ cos∅]

                                         =[1/sin∅ cos∅] - [2 sin²∅ cos²∅/sin∅ cos∅]

                                         =sec∅ cosec∅ - 2 sin∅ cos∅

Therefore LHS = RHS

Answered by ishwardeswal096
0

Step-by-step explanation:

bbeusilekehwfgwbeebqhhavgzi yw68w0slwgsy8zlkqhzuiqnshusks

Attachments:
Similar questions