Prove that tan o/1-cot o +cot o/1-tan o = 1+sec o.cosec o
Answers
Answer:
1-cot o
=1-cos o/sin o
=(sin o -cos o)/sin o
similarly, 1-tan o =(cos o-sin o)/cos o
tan o/1-cot o +cot o/1-tan o
=(sin o/cos o) /(sin o -cos o)/sin o + (cos o/sin o) / (cos o- sin o)/ cos o
=sin²o /cos o(sin o-cos o) + cos²o/sin o(cos o-sin o)
=sin²o/(sin o.cos o- cos²o) + cos²o/(sin o cos o-sin²o)
=(sin³o.cos o-sin⁴o+sin o.cos³o-cos⁴o)/ (sin o.cos o-cos²o).(sin o.cos o-sin²o)
=sin o.cos o(sin²o+cos²o)-(sin⁴o+cos⁴o) / {(sin o.cos o)²-sin o.cos o(sin²o+cos²o)+(sin o.cos o)²}
={sin o.cos o-(sin²o+cos²o)²+2.sin²o.cos²o} / {2.sin²o.cos²o-(sin o.cos o)}
={sin o.cos o-(1)²+2.sin²o.cos²o}/{2.sin²o.cos²o-(sin o.cos o)}
={2.sin²o.cos²o-sin o.cos o+2.sin o.cos o-1}/{2.sin²o.cos²o-(sin o.cos o)}
={2.sin²o.cos²o-(sin o.cos o)}/{2.sin²o.cos²o-(sin o.cos o)} + (2.sin o.cos o -1)/{sin o.cos o(2.sin o.cos o-1)}
=1 + (1/sin o.cos o)
=1 + sec o.cosec o.....[proved]