prove that :tan (pi/4+A) - tan (pi/4-A) =2tan2A
answer fast..
Answers
Answered by
22
Here's Ur answer,
➡tan (π/4+A)=[(1+tan A)/(1- tan A]
tan(π/4-A)=[(1-tan A)/((1+tan A)]
➡> tan (π/4+A)-tan (π/4-A)
= {(1+ tan A)^2-(1- tan A)^2}/(1-tan ^2 A)
=4 tan A/(1- tan ^2 A)
=2(2 tan A/(1- tan ^2 A)
✔✔= 2 tan 2A✔✔
Hope it helps
✌✌
Answered by
5
Answer:
Step-by-step explanation:tan (π/4+A)=[(1+tan A)/(1- tan A]
tan(π/4-A)=[(1-tan A)/((1+tan A)]
➡> tan (π/4+A)-tan (π/4-A)
= {(1+ tan A)^2-(1- tan A)^2}/(1-tan ^2 A)
=4 tan A/(1- tan ^2 A)
=2(2 tan A/(1- tan ^2 A)
= 2 tan 2A=R.H.S
Similar questions