Math, asked by helper7821, 1 year ago

prove that :

tan theta - cot theta = 2 sin squared theta - 1 / sin theta cos theta

Answers

Answered by Avi0102
3

Answer:

Hope this helps.

Please mark it the brainliest

Attachments:
Answered by Anonymous
20

\text{\huge{Question}}

tan\theta - cot\theta =  \frac{2 {sin}^{2}\theta}{sin\theta \: cos\theta} \\  \\

_____________________________

\text{\huge{Solution}}

\text{Taking LHS}



tan\theta - cot\theta  \\  \\  =  >  \frac{sin\theta }{cos\theta} -  \frac{cos\theta}{sin\theta} \\  \\  =  >  \frac{ {sin}^{2}\theta -  {cos}^{2}\theta }{sin\theta \: cos\theta}

_____________________________

\text{As we know that}

 {cos}^{2} \theta = 1 -  {sin}^{2} \theta

_____________________________


 =  >  \frac{{sin}^{2} \theta  - ( 1 -  {sin}^{2} \theta)}{sin\theta \: cos\theta} \\  \\ =  >   \frac{{sin}^{2} \theta  -1  + {sin}^{2} \theta}{sin\theta \: cos\theta}  \\  \\  =  >  \frac{2{sin}^{2} \theta  - 1}{sin\theta \: cos\theta}

 \frac{2{sin}^{2} \theta  - 1}{sin\theta \: cos\theta}  = RHS


\text{HENCE PROVED}

_____________________________


\text{\huge{Thanks}}

0203abhishekp7jkdm: hiii
Similar questions