Math, asked by VAISHNAVI5204K, 1 year ago

prove that tan theta minus cot theta by sin theta cos theta is equal to tan square theta minus cos square theta


shreyakumbhar: u mean tantheta - cottheta/sinthetacostheta = tansquare theta - cotsquare theta

Answers

Answered by shreyakumbhar
217

Here is ur ans....
Hope it will help u...
plzz mark as brainliest.....
Attachments:

shreyakumbhar: mi insta band kela
shreyakumbhar: mind distract hota mhnun
shreyakumbhar: ‌ kay bolaych aahai???
shreyakumbhar: ohh
Answered by tardymanchester
63

Answer:

Hence prove given below.

Step-by-step explanation:

Given : Expression \frac{tan\theta-cot\theta}{(sin\theta)(cos\theta)}

To prove : The expression is equal to tan^2\theta-cot^2\theta

Solution : The expression

\frac{tan\theta-cot\theta}{(sin\theta)(cos\theta)}

=\frac{\frac{sin\theta}{cos\theta}-\frac{cos\theta}{sin\theta}}{(sin\theta)(cos\theta)}

=\frac{\frac{sin^2\theta-cos^2\theta}{cos\theta sin\theta}}{(sin\theta)(cos\theta)}

=\frac{sin^2\theta-cos^2\theta}{sin^2\theta)(cos^2\theta)}

=\frac{1}{cos^2\theta}-\frac{1}{sin^2\theta}

=sec^2\theta-cosec^2\theta}

=1+tan^2\theta-(1+cot^2\theta)

=1+tan^2\theta-1-cot^2\theta

=tan^2\theta-cot^2\theta

The requited result.



Similar questions