Math, asked by gaminghero27pcfjb8, 1 year ago

prove that tan theta tan(60 + theta)tan(60 - theta) = tan 3 theta and hence deduce that tan 20° tan 40° tan 60° tan 80° = 3. I proved the first part but I need help with deducing the values

Answers

Answered by rohitkumargupta
34

HELLO DEAR,



we know:-


tan(A - B) = {tanA - tanB} / (1 + tanAtanB)-----( 1 )



tan(A + B) = {tanA + tanB} / (1 - tanAtanB)-----( 2 )



multiply--------( 1 ) & ------( 2 )



tan(A - B)*tan(A + B) = {tanA - tanB} / (1 + tanAtanB) * {tanA + tanB} / (1 - tanAtanB)



tan(A - B)*tan(A + B) = (tan²A - tan²B) / (1 - tan²A tan²B)



put A = 60° and B = {\Theta} we get,



tan(60 - {\Theta})tan(60 + {\Theta}) = \bold{\frac{(\sqrt{3})^2 - tan^2{\Theta}}{1 - (\sqrt{3})^2tan^2{\Theta}}}



tan(60 - {\Theta})tan(60 + {\Theta}) = \bold{\frac{3 - tan^2{\Theta}}{1 - 3tan^2{\Theta}}}



tan(60 - {\Theta})tan(60 + {\Theta}) = \frac{tan\Theta}{tan\Theta} * \bold{\frac{3 - tan^2{\Theta}}{1 - 3tan^2{\Theta}}}



tan(60 - \Theta)tan(60 + \Theta) = \bold{\frac{1}{tan\Theta}} * \bold{\frac{3tan\Theta - tan^3\Theta}{1 - 3tan^2\Theta}}



we know :- tan3A = \bold{\frac{3tan\Theta - tan^3\Theta}{1 - 3tan^2\Theta}}



tan\Thetatan(60 - \Theta)tan(60 + \Theta) = tan3\Theta----------( 3 )



put \Theta = 20, in ---------( 3 )



tan(20) tan(60 - 20) tan(60 + 20) = tan(3*20)



multiply both side by "tan60"



tan(20) tan(40) tan(60) tan(80) = tan(60) * tan(60)



tan(20) tan(40) tan(60) tan(80) = (√3) * (√3)



tan(20) tan(40) tan(60) tan(80) = 3



\bold{\Large{HENCE, \,\,PROVED}}



I HOPE ITS HELP YOU DEAR,T


THANKS

Answered by jitupatiltarhadi39
27

Answer:

Please mark me brainliest

Attachments:
Similar questions