prove that tan theta tan(60 + theta)tan(60 - theta) = tan 3 theta and hence deduce that tan 20° tan 40° tan 60° tan 80° = 3. I proved the first part but I need help with deducing the values
Answers
HELLO DEAR,
we know:-
tan(A - B) = {tanA - tanB} / (1 + tanAtanB)-----( 1 )
tan(A + B) = {tanA + tanB} / (1 - tanAtanB)-----( 2 )
multiply--------( 1 ) & ------( 2 )
tan(A - B)*tan(A + B) = {tanA - tanB} / (1 + tanAtanB) * {tanA + tanB} / (1 - tanAtanB)
tan(A - B)*tan(A + B) = (tan²A - tan²B) / (1 - tan²A tan²B)
put A = 60° and B = we get,
tan(60 - )tan(60 + ) =
tan(60 - )tan(60 + ) =
tan(60 - )tan(60 + ) = *
tan(60 - )tan(60 + ) = *
we know :- tan3A =
tantan(60 - )tan(60 + ) = tan3----------( 3 )
put = 20, in ---------( 3 )
tan(20) tan(60 - 20) tan(60 + 20) = tan(3*20)
multiply both side by "tan60"
tan(20) tan(40) tan(60) tan(80) = tan(60) * tan(60)
tan(20) tan(40) tan(60) tan(80) = (√3) * (√3)
tan(20) tan(40) tan(60) tan(80) = 3
I HOPE ITS HELP YOU DEAR,T
THANKS
Answer:
Please mark me brainliest