Math, asked by sachinsharma49, 9 months ago

Prove that tan x.tan (π/3 - x). tan ( π/3+ x) = tan 3x​

Answers

Answered by harshitchopra
8

Answer:

RHS=tan3x

Step-by-step explanation:

tanx. \frac{tan60-tanx}{1+tan60.tanx}.\frac{tanx+tan60}{1-tanx.tan60}

tanx.\frac{tan^{2}60-tan^{2}x}{1-tan^{2}x.tan^{2}60  }

\frac{3tanx-tan^{3}x}{1-3tan^{2}x }

=tan3x

Hence proved

Answered by sandhansahu303
0

Answer:

tanx. \frac{tan60-tanx}{1+tan60.tanx}1+tan60.tanxtan60−tanx .\frac{tanx+tan60}{1-tanx.tan60}1−tanx.tan60tanx+tan60

tanx.\frac{tan^{2}60-tan^{2}x}{1-tan^{2}x.tan^{2}60 }1−tan2x.tan260tan260−tan2x

\frac{3tanx-tan^{3}x}{1-3tan^{2}x }1−3tan2x3tanx−tan3x

=tan3x

Hence proved

Similar questions