Prove that tan² θ – (1/cos² θ) + 1 = 0
Answers
Answered by
3
Tan² θ – (1/cos² θ) + 1 = 0
Explanation:
Given: Tan² θ – (1/cos² θ) + 1 = 0
From trigonometric identities, we know that sec² θ = 1/cos² θ, sec² θ = 1 + tan² θ
Tan² θ – (1/cos² θ) + 1 = 0
tan² θ – sec² θ + 1 = 0
(1 + tan² θ) – sec² θ = 0
sec² θ - sec² θ = 0
0 = 0
Hence proved.
Similar questions
English,
5 months ago
Math,
5 months ago
English,
11 months ago
Math,
11 months ago
Social Sciences,
1 year ago