Math, asked by OverSmart01, 4 months ago

prove that tan2A+cot2A+2=sec2A*cosec2A​

Answers

Answered by ashi1532
2

Step-by-step explanation:

hope it helps you dude

Mark brainlist

Attachments:
Answered by sonisiddharth751
3

Step-by-step explanation:

 \\ \displaystyle  \bf  \large\blue{Question \::  - }  \\

Prove that :-

 \displaystyle\sf {tan}^{2} A +  {cot}^{2} A+ 2 =  {sec}^{2} A +  {cosec}^{2}

 \\ \displaystyle \bf \large  \red{Solution \:  :  - } \\

  • tan²A = sin²A/cos²A
  • cot²A = cos²A/sin²A

LHS :-

  \displaystyle \sf {tan}^{2} A +  {cot}^{2} A+ 2 \\  \\  \displaystyle\sf \:  \dfrac{ {sin}^{2} A}{ {cos}^{2} A}  +  \dfrac{ {cos}^{2} A}{ {sin}^{2} A}  + 2 \\  \\ \displaystyle  \sf \: take \: lcm \: we \: get \:  :  -  \\  \\ \displaystyle \sf \:  \dfrac{ {sin}^{4} A +  {cos}^{4} A + 2 {cos}^{2}A. {sin}^{2} A}{ {cos}^{2}A. {sin}^{2}  A}  \\

use identity a⁴ + b⁴ = ( a² + b² ) – 2a².b²

 \\  \displaystyle \sf \:  \dfrac{(  { {sin}^{2}A +  {cos}^{2}A)  }^{2}  - 2 {sin}^{2}A. {cos}^{2}A + 2  {cos}^{2}A. {sin}^{2}A}{ {cos}^{2} A. {sin}^{2}A }  \\  \\ \displaystyle\sf \dfrac{(  { {sin}^{2}A+  {cos}^{2}A)  }^{2} \cancel{  - 2 {sin}^{2}A. {cos}^{2}A} \cancel{ + 2  {cos}^{2}A. {sin}^{2}A}}{ {cos}^{2} A. {sin}^{2}A}  \\  \\  \displaystyle \sf \:  \dfrac{ {( {sin}^{2}a +  {cos}^{2}a)  }^{2} }{ {cos}^{2}A. {sin}^{2}  A}  \\  \\ \displaystyle \sf \:   \frac{ {(1)}^{2} }{ {cos}^{2} A +  {sin}^{2} }  \\  \\ \displaystyle \sf \frac{1}{ {cos}^{2} A} . \dfrac{1}{ {sin}^{2}A}  \\  \\ \displaystyle \sf \:  {sec}^{2}A. {cosec}^{2}  A

Hence,

 \sf LHS \:  = RHS

Similar questions