prove that :- tan²theta -cot²theta = (tan theta -cot theta )/(sin theta.cos theta)
its urgent
Answers
To prove :-
tan²θ - cot²θ = ( tan θ - cot θ ) / ( sin θ . cos θ )
Proof :-
Taking LHS
→ LHS = tan²θ - cot²θ
putting tan θ = sin θ / cos θ and cot θ = cos θ / sin θ
→ (sin²θ / cos²θ) - (cos²θ / sin²θ)
Taking LCM
→ ( (sin²θ)² - (cos²θ)² ) / ( sin²θ . cos²θ )
using algebraic identity a² - b² = ( a + b ) ( a - b ) in Numerator
→ (( sin²θ + cos²θ ) ( sin²θ - cos²θ )) / ( sin²θ . cos²θ )
using trigonometric identity
sin²θ + cos²θ = 1
→ ( 1 ( sin²θ - cos²θ )) / ( sin²θ . cos²θ )
→ ( sin²θ - cos²θ ) / ( sin²θ . cos²θ )
Now,
Taking RHS
→ RHS = ( tan θ - cot θ ) / ( sin θ . cos θ )
putting tan θ = sin θ / cos θ and cot θ = cos θ / sin θ
→ ( (sin θ / cos θ) - (cos θ / sin θ) ) / ( sin θ . cos θ )
→ ( ( sin²θ - cos²θ ) / ( sin θ . cos θ ) ) / ( sin θ . cos θ )
→ ( sin²θ - cos²θ ) / ( sin²θ . cos²θ )
so,
LHS = RHS
Proved .