prove that (tan³A/1+tan²A) + (cot³A/1+cot²A) = secAcosecA - 2sinAcosA
Answers
Answered by
3
Answer:
=Tan³A/1+tan²A + cot³A/1+cot²A
=secA cosecA- 2 sinA cos A
=tan³A/(1+tan²A) + cot²A/(1+cot²A)
=tan³A/sec²A + cot³A/csc²A
=sin³A/cosA + cos³A/sinA
=(sin⁴A + cos⁴A)/(sinA.cosA)
=[(sin²A + cos²A)² -2(sin²A.cos²A)/(sinA.cosA)
=(1 - 2sin²A.cos²A)/(sinA.cosA)
Step-by-step explanation:
Answered by
9
HERE IS YOUR ANSWER
HOPE IT HELPS.....
Attachments:
Similar questions