prove that,tan3A-tan2A-tanA=tan3A.tan2A.tanA
Answers
Answered by
1
Step-by-step explanation:
We know that,
3A = 2A + A
Now, we also know,
Tan(A + B) = (Tan A + Tan B)/(1 - Tan A•Tan B)
Now,
Putting 2A and A instead of A and B respectively, we get,
Tan(2A + A) = (Tan 2A + Tan A)/(1 - Tan 2A•Tan A)
Tan 3A = (Tan 2A + Tan A)/(1 - Tan 2A•Tan A)
(Tan 2A + Tan A) = Tan 3A × (1 - Tan 2A•Tan A)
Tan 2A + Tan A = Tan 3A - Tan 3A•Tan 2A•Tan A
Tan 3A - Tan 2A - Tan A = Tan 3A•Tan 2A•Tan A
Hence proved.
Hope it helped and believing you understood it........All the best
Similar questions