Math, asked by nakulrathore, 9 months ago

Prove that tan60=2tan30/1-tan^2 30

Answers

Answered by gurinderk247
1

Step-by-step explanation:

should be help full I think

Attachments:
Answered by prince5132
9

TO PROVE :-

 \to \sf \:  \tan \: 60^{ \circ}  =  \dfrac{2 \tan \:30^{ \circ}}{1 -  \tan^{2}  \: 30^{ \circ}  }

GIVEN :-

 \to \sf \:  \tan \: 60^{ \circ}  =  \dfrac{2 \tan \:30^{ \circ}}{1 -  \tan^{2}  \: 30^{ \circ}  }

SOLUTION :-

➠ Refer to the chart for the value of tan 60° and tan 30°.

\huge\displaystyle\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6}&0^{\circ}&30^{\circ}&45^{\circ}&60^{\circ}&90^{\circ}\cline{1-6}\cline{1-6}Sin&0&$\dfrac{1}{2}$&$\dfrac{1}{\sqrt{2}}$&$\dfrac{\sqrt{3}}{2}$&1\cline{1-6}\cline{1-6}Cos&1&$\dfrac{\sqrt{3}}{2}$&$\dfrac{1}{\sqrt{2}}$&$\dfrac{1}{2}$&0\cline{1-6}\cline{1-6}Tan&\infty&$\dfrac{1}{\sqrt{3}}$&1&$\sqrt{3}$&0 \cline{1 - 5}\cline{1 - 5}\end{tabular}

 \to \mathbb{RHS} \\  \\  \to \sf \:  \dfrac{2 \tan \:30^{ \circ}}{1 -  \tan^{2}  \: 30^{ \circ}} \\  \\  \to \sf \: \left(  \dfrac{2 \times \dfrac{1}{ \sqrt{3} }  }{1 -   \bigg(\dfrac{1}{ \sqrt{3} } \bigg)^{2} } \right) \\  \\  \to \sf \:  \left(  \dfrac{ \dfrac{2}{ \sqrt{3} } }{ 1 -  \dfrac{1}{ \sqrt{9} }  } \right) \\  \\  \to \sf \:  \left(  \dfrac{ \dfrac{2}{ \sqrt{3} } }{1 -  \dfrac{1}{3} } \right) \\  \\  \to \sf \left(  \dfrac{ \dfrac{2}{ \sqrt{3} } }{  \dfrac{3 - 1}{3} } \right) \\  \\  \to \sf \:  \frac{ \cancel{2}}{  \cancel{\sqrt{3}}}  \times  \frac{ \cancel{3}}{ \cancel{2}}  \\  \\  \to \sf \:  \sqrt{3}  \\  \\  \to \sf \:  \tan \: 60 ^{ \circ}  \\  \\  \to \mathbb{LHS}

L.H.S = R.H.S

HENCE VERIFIED ✔

Similar questions