Prove that
Tan6tan12tan84tan78=1
Answers
Answered by
0
Answer:
tan6tan12tan84tan78
tan6tan12cot(90-84)cot(90-78)
tan6tan12cot6cot12
tan6*1/tan6 * tan12*1/tan12
1*1=1
Step-by-step explanation:
Answered by
0
Answer:
Step-by-step explanation:
tanФ=cot(90-Ф)
∴tan6=cot(90-6)
=cot84=1/tan84
tan12=cot(90-12)
=cot78=1/tan78
By subsituting the value of tan6 and tan12 in
tan6tan12tan84tan78= 1/tan84×1/tan78×tan84×tan78
=1
hence proved
Similar questions