prove that:
tan70°=tan20°+2tan50°
Answers
Answered by
4
According to the trigonometric identity,
tan70=tan(20+50)
tan70=(tan20+tan50)/1-tan20tan50
tan70-tan20tan50tan70=tan20+tan50
Also tan70tan20=tan70cot70=1
Hence
tan70-tan50=tan20+tan50
So tan70=tan20+2tan50
tan70=tan(20+50)
tan70=(tan20+tan50)/1-tan20tan50
tan70-tan20tan50tan70=tan20+tan50
Also tan70tan20=tan70cot70=1
Hence
tan70-tan50=tan20+tan50
So tan70=tan20+2tan50
Similar questions