Math, asked by mahapatramanoj631, 1 year ago

prove that tanA/1-cotA+cotA/1-tanA=1+secA cosecA​

Answers

Answered by aditya963128
3

Step-by-step explanation:

very important question

Attachments:
Answered by Anonymous
9

ANSWER:-

Given:

 \frac{tan \: A}{1  - cot \: A}  + \frac{cot \: A}{1 - tan \: A}

To prove:

1 + secA cosecA

Proof:

Take L.H.S

 \frac{tan \: A}{1 - cot \: A}  +  \frac{cot \: A}{1 - tan \: A}  \\  \\  =  >  \frac{tan \: A}{1 -  \frac{1}{tan \: A} }  +  \frac{ \frac{1}{tan \: A} }{1 - tan \: A}  \\  \\  =  >  \frac{ \frac{tan \: A}{tan \: A - 1} }{tan \: A}  +  \frac{1}{tan \: A(1 - tan \: A)}  \\  \\  =  >  \frac{ {tan}^{2} A}{tan \: A - 1}  +  \frac{1}{tan \: A(1 - tan \: A)}  \\  \\  =  >  \frac{ -  {tan}^{2} A}{1 - tan \: A}  +  \frac{1}{tan \: A(1 - tan \: A)}  \\  \\  =  >  \frac{ -  {tan}^{3} A + 1}{tan \: A(1 - tan \: A)} \\  \\  =  >  \frac{ {1}^{3}  -  {tan}^{3} A }{tan \: A(1 - tan \: A)}  \\  \\  =  >  \frac{(1 - tan \: A)(1 +  {tan}^{2} A + tan \: A) }{tan \: A(1 - tan \: A)}  \\  \\  =  >  \frac{(1 +  { tan }^{2} A + tan \: A)}{tan \: A}  \\  \\  =  >  \frac{( {sec}^{2} A + tan \: A) }{tan \: A}  \\  \\  =  >  \frac{ {sec}^{2} A}{tan \: A}  +  \frac{tan \: A}{tan \: A}  \\  \\  =  >  {sec}^{2} A \: cot \: A + 1 \\  \\  =  >  \frac{1}{ {cos}^{2} A}  \times  \frac{cos \: A}{sin \: A}  + 1 \\  \\  =  >  \frac{1}{cos \: A sin \: A}  + 1 \\  \\  =  > 1 + sec \: A \: cosec \: A \:  \:  \:  \:  \:  \: [R.H.S.]

Hence,

Proved.

Hope it helps ☺️

Similar questions