prove that:
tana + 2tan2a + 4tan4a + 8cot8a = cota
Answers
Answered by
8
Solving from right
tan A + 2tan2A + 4tan4A + 8cot8A = tan A + 2tan2A + 4tan4A + 8/tan8A
= tan A + 2tan2A + 4tan4A + 8(1-tan24A)/2tan4A
= tan A + 2tan2A + [{4tan4A(tan4A)} + 4 (1-tan24A)]/tan4A
= tan A + 2tan2A + [4tan24A + 4 - tan24A]/tan4A
= tan A + 2tan2A + 4/tan4A
Proceeding as above, we will reach to
tan A + 2tan2A + 4tan4A + 8cot8A = 1/tanA = cotA
Hence proved.
All the best.
Thankuu
Similar questions