Math, asked by ajithms89, 1 year ago

Prove that
tanA+cotA=2 cosec A

Answers

Answered by RakhiBhedke
0

Step-by-step explanation:

To prove:

tanA + cotA = 2cosecA

Proof:

L.H.S = tanA + cotA

=>  \frac{sinA}{cosA} + \frac{cosA}{sinA}

[since tanA = sinA/cosA and cotA = cosA/sinA]

 \frac{sin^2A + cos^2A}{sinA \times cosA}

 \frac{1}{sinA \times cosA} [since sin^2A + cos^2A = 1]

Multiplying by 2 on both numerator and denominator,

 \frac{1 \times 2}{2(sinA \times cosA)}

 \frac{2}{2(sinA \times cosA)}

We know that,

2sinA × cosA = sinA

 \frac{2}{2sinA}

 2 \times \frac{1}{sinA}

 2 \times cosecA

=> 2cosecA

L.H.S = R.H.S

 \boxed{\pink{\mathsf{\therefore tanA + cotA = 2cosecA}}}

Hence, the proof.

Similar questions