prove that tanA-cotA /sinAcosA =tan ^2A-cot^2A
Answers
Answered by
42
Given, RHS = tan^2A - cot^2A
= (tanA-cotA)(tanA+cotA)
= (tanA-cotA)(sinA/cosA+cosA/sinA)
= (tanA-cotA)(sin^2A+cos^2A)/(SinA cosA) (sin^2a+cos^2a=1)
= (tanA-cotA)/sinAcosA
RHS = LHS.
Hope this helps!
= (tanA-cotA)(tanA+cotA)
= (tanA-cotA)(sinA/cosA+cosA/sinA)
= (tanA-cotA)(sin^2A+cos^2A)/(SinA cosA) (sin^2a+cos^2a=1)
= (tanA-cotA)/sinAcosA
RHS = LHS.
Hope this helps!
Answered by
23
Hi !
RHS = tan²A - cot²A
this can be written in the form of the identity (a-b) (a + b) = a² - b²
= ( tan A - cotA) (tanA + cotA)
we know that ,
tan A = sinA/cosA
cot A = cosA/sinA
i.e.,
= (tanA - cotA) (sinA/cosA + cosA/sinA)
(sinA/cosA + cosA/sinA) :- LCM = sinAcosA
= (tanA - cotA) ( sin²A + cos²A/sinAcosA)
but , we know that , sin²A + cos²A = 1 (identity)
so,
= (tanA - cotA) ( 1/sinAcosA)
= (tanA - cotA)/sinAcosA
= LHS
RHS = tan²A - cot²A
this can be written in the form of the identity (a-b) (a + b) = a² - b²
= ( tan A - cotA) (tanA + cotA)
we know that ,
tan A = sinA/cosA
cot A = cosA/sinA
i.e.,
= (tanA - cotA) (sinA/cosA + cosA/sinA)
(sinA/cosA + cosA/sinA) :- LCM = sinAcosA
= (tanA - cotA) ( sin²A + cos²A/sinAcosA)
but , we know that , sin²A + cos²A = 1 (identity)
so,
= (tanA - cotA) ( 1/sinAcosA)
= (tanA - cotA)/sinAcosA
= LHS
Similar questions