Math, asked by jeevanrathod, 1 year ago

prove that (tanA+secA-1)/tanA-secA+1 =1+sinA/cosA

Answers

Answered by nikki200414
0

I wish to you meaning part can be solved by you

Attachments:
Answered by ᎪzríeƖ
2

Chapter :

Trigonometrical Identities

To Prove :

 =  \dfrac{tanA + secA - 1}{tanA  -  secA  + 1}  =  \dfrac{1 + sinA}{cosA}

Solution :

We have :

L.H.S =  =  \dfrac{tanA + secA - 1}{tanA  -  secA  + 1}

 =  \dfrac{(tanA + secA - 1) -  ({sec}^{2}A -  {tan}^{2}  A)}{(tanA  -  secA  + 1)}

 =  \dfrac{(secA + tanA) -  ({sec}A  + {tan} A)({sec}A -  {tan} A)}{(tanA  -  secA  + 1)}

 =  \dfrac{(secA + tanA)[1 -  ({sec}A   - {tan} A)]}{(tanA  -  secA  + 1)}

 =  \dfrac{(secA  + tanA) ({tanA - secA + 1})}{(tanA  -  secA  + 1)}

 = (secA + tanA)

 =   \dfrac{1}{cosA}  +  \dfrac{sinA}{cosA}

 =  \dfrac{(1 + sinA)}{cosA} = R.H.S

 \thereforeL.HS = R.H.S

Hence, Proved.

Similar questions