Math, asked by princeduarah8, 7 months ago

Prove that tanA/secA-1 + tanA/secA+1 = 2cosecA​

Answers

Answered by ayushkumarpanigrahi
3

LHS = tanA/secA - 1 + tanA/secA + 1

= sinA/cosA / 1/cosA - 1 + sinA/cosA / 1/cosA + 1 [because tan A = sin A / cos A and sec A = 1 / cos A]

= sinA/cosA / (1 - cosA) / cosA + sinA/cosA / (1 + cosA) / cos A

= sinA / 1 - cosA + sinA / 1 + cos A

= [sinA (1 + cosA) + sinA (1 - cosA)] / (1 - cosA) (1 + cosA)

= [sinA + sinAcosA + sinA - sinAcosA] / 1 - cos(sq) A

= 2sinA / sin(sq) A [From identity: sin(sq) A + cos(sq) A = 1]

= 2 / sin A

= 2 x 1 / sinA

=2 cosecA

HOPE THIS HELPS YOU

PLEASE MARK AS BRAINLIEST

Answered by Anonymous
1

\bf\huge\blue{\underline{\underline{ Question : }}}

Prove that :

\sf\: \dfrac{\tan\: A}{\sec\:A - 1} + \dfrac{\tan\:A}{\sec\:A + 1} = 2 \csc \: A

\bf\huge\blue{\underline{\underline{ Solution : }}}

LHS :

\sf\:\implies \dfrac{\tan\:A}{\sec\:A - 1} + \dfrac{\tan\:A}{\sec\:A + 1}

  • tan θ = sin θ/cos θ
  • sec θ = 1/cos θ

\sf\:\implies \dfrac{\cfrac{\sin\:A}{\cos\:A}}{\cfrac{1}{\cos\:A} - 1} + \dfrac{\cfrac{\sin\:A}{\cos\:A}}{\cfrac{1}{\cos\:A} + 1}

\sf\:\implies \dfrac{\cfrac{\sin\:A}{\cos\:A}}{\cfrac{1 - \cos\:A}{\cos\:A}} + \dfrac{\cfrac{\sin\:A}{\cos\:A}}{\cfrac{1 + \cos\:A}{\cos\:A}}

\sf\:\implies \dfrac{\sin\:A}{\cos\:A} \times \dfrac{\cos\:A}{1 - \cos\:A}\ + \dfrac{\sin\:A}{\cos\:A}\times \dfrac{\cos\:A}{1 + \cos\:A}

\sf\:\implies \dfrac{\sin\:A}{1 -\cos\:A} + \dfrac{\sin\:A}{1 + \cos\:A}

\sf\:\implies \dfrac{\sin\:A( 1 + \cos\:A) + \sin\:A(1 - \cos\:A)}{(1 - \cos\:A)(1 + \cos\:A)}

\sf\:\implies \dfrac{\sin\:A + \sin\:A\cos\:A + \sin\:A - \sin\:A\cos\:A}{(1)^{2} - (\cos\:A)^{2}}

  • (a + b)(a - b) = a² - b²

\sf\:\implies \dfrac{\sin\:A + \sin\:A}{1 - \cos^{2}\:A}

  • 1 - cos² θ = sin² θ

\sf\:\implies \dfrac{2 \sin\:A}{\sin^{2}\:A}

\sf\:\implies \dfrac{2}{\sin\:A}

\sf\:\implies 2 \: \dfrac{1}{\sin\:A}

  • 1/sin θ = cosec θ

\sf\:\implies 2\:{\csc}\:A = \tt\green{RHS}

# Hence,it was proved.

More information :

\boxed{\begin{minipage}{7 cm} Fundamental Trigonometric Identities \\ \\$:\implies \sin^{2}\theta + cos^{2}\theta = 1 \\ \\ :\implies \ 1 + tan^{2}\theta = sec^{2}\theta \\ \\ :\implies  1 + cot^{2}\theta=\text{cosec}^2\, \theta$ \end{minipage}}

______________________________________________________

Similar questions