Prove that tanA/secA-1 + tanA/secA+1 = 2cosecA
Answers
Answered by
3
LHS = tanA/secA - 1 + tanA/secA + 1
= sinA/cosA / 1/cosA - 1 + sinA/cosA / 1/cosA + 1 [because tan A = sin A / cos A and sec A = 1 / cos A]
= sinA/cosA / (1 - cosA) / cosA + sinA/cosA / (1 + cosA) / cos A
= sinA / 1 - cosA + sinA / 1 + cos A
= [sinA (1 + cosA) + sinA (1 - cosA)] / (1 - cosA) (1 + cosA)
= [sinA + sinAcosA + sinA - sinAcosA] / 1 - cos(sq) A
= 2sinA / sin(sq) A [From identity: sin(sq) A + cos(sq) A = 1]
= 2 / sin A
= 2 x 1 / sinA
=2 cosecA
HOPE THIS HELPS YOU
PLEASE MARK AS BRAINLIEST
Answered by
1
Prove that :
★ LHS :
- tan θ = sin θ/cos θ
- sec θ = 1/cos θ
- (a + b)(a - b) = a² - b²
- 1 - cos² θ = sin² θ
- 1/sin θ = cosec θ
# Hence,it was proved.
★ More information :
______________________________________________________
Similar questions