Math, asked by geetayadav11971, 8 months ago

prove that
(1 + \frac{1}{tan {}^{2}a } ) \: (1 + \frac{1}{cot {}^{2} a} ) = \frac{1}{sin {}^{2} a - sin {}^{4}a }
using LHS =RHS
will mark brainliest to right answer
plzz ans it fast

Answers

Answered by sandy1816
3

Answer:

your answer attacted in the photo

Attachments:
Answered by sk181231
4

Answer:

{\huge{\boxed{\red{\mathscr{SolutioN}}}}}

(1 +  \frac{1}{tan {}^{2} a} )(1 +  \frac{1}{cot {}^{2}a } )

 = (1 +  \frac{cos {}^{2} a}{sin {}^{2} a} )(1 +  \frac{sin {}^{2}a }{1 + cos {}^{2}a } )

 = (  \frac{sin {}^{2} a + cos {}^{2}a }{sin {}^{2} a} )( \frac{cos {}^{2}a + sin  {}^{2}   a}{cos {}^{2} a} )

 =  (\frac{1}{sin {}^{2}a } )( \frac{1}{cos {}^{2} a} )

 =  \frac{1}{sin {}^{2} a \: cos {}^{2} a}

 =  \frac{1}{sin {}^{2} a(1 - sin {}^{2} a)}

 =  \frac{1}{sin {}^{2} a - sin {}^{4} a}

Similar questions