Math, asked by sanjaiganeshan, 8 months ago

Prove that
(1 +  \tan  ^{2} a) + (1 +  \frac{1}{ \tan ^{2}a } ) = \frac{1}{ { \sin }^{2}a  -  { \tan }^{4}a }

Answers

Answered by varadad25
4

Correct Question:

Prove that

\displaystyle{\sf\:(\:1\:+\:\tan^2\:a\:)\:+\:\left(\:1\:+\:\dfrac{1}{\tan^2\:a}\:\right)\:=\:\dfrac{1}{\sin^2\:a\:-\:\bf{\sin^4\:a}}}

Answer:

\displaystyle{\boxed{\red{\sf\:(\:1\:+\:\tan^2\:a\:)\:+\:\left(\:1\:+\:\dfrac{1}{\tan^2\:a}\:\right)\:=\:\dfrac{1}{\sin^2\:a\:-\:\sin^4\:a}\:}}}

Step-by-step-explanation:

We have given a trigonometric equation.

We have to prove that trigonometric equation.

The given trigonometric equation is

\displaystyle{\sf\:(\:1\:+\:\tan^2\:a\:)\:+\:\left(\:1\:+\:\dfrac{1}{\tan^2\:a}\:\right)\:=\:\dfrac{1}{\sin^2\:a\:-\:\sin^4\:a}}

\displaystyle{\sf\:LHS\:=\:(\:1\:+\:\tan^2\:a\:)\:+\:\left(\:1\:+\:\dfrac{1}{\tan^2\:a}\:\right)}

We know that,

\displaystyle{\boxed{\pink{\sf\:1\:+\:\tan^2\:a\:=\:\sec^2\:a\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\sec^2\:a\:+\:\left(\:1\:+\:\dfrac{1}{\tan^2\:a}\:\right)}

We know that,

\displaystyle{\boxed{\blue{\sf\:\cot\:a\:=\:\dfrac{1}{\tan\:a}\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\sec^2\:a\:+\:(\:1\:+\:\cot^2\:a\:)}

We know that,

\displaystyle{\boxed{\green{\sf\:1\:+\:\cot^2\:a\:=\:cosec^2\:a\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\sec^2\:a\:+\:cosec^2\:a}

We know that,

\displaystyle{\boxed{\purple{\sf\:\sec\:a\:=\:\dfrac{1}{\cos\:a}\:}}}

\displaystyle{\boxed{\orange{\sf\:cosec\:a\:=\:\dfrac{1}{\sin\:a}\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{1}{\cos^2\:a}\:+\:\dfrac{1}{\sin^2\:a}}

We know that,

\displaystyle{\boxed{\pink{\sf\:\cos^2\:a\:=\:1\:-\:\sin^2\:a\:}}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{1}{1\:-\:\sin^2\:a}\:+\:\dfrac{1}{\sin^2\:a}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cancel{\sin^2\:a\:}\:+\:1\:-\:\cancel{\sin^2\:a}}{\sin^2\:a\:(\:1\:-\:\sin^2\:a\:)}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{1}{\sin^2\:a\:-\:\sin^4\:a}}

\displaystyle{\sf\:RHS\:=\:\dfrac{1}{\sin^2\:a\:-\:\sin^4\:a}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:LHS\:=\:RHS\:}}}}

Hence proved!

Answered by XxitzZBrainlyStarxX
6

Question:-

Prove that:

{\sf \sf \large\:(\:1+tan^2\:A\:)\:+\:\left(\:1\:+\:\dfrac{1}{tan^2\:A}\:\right)\:=\:\dfrac{1}{sin^2\:A\:-\:{sin^4\:A}}}

Given:-

{\sf \sf \large\:(\:1+tan^2\:A\:)\:+\:\left(\:1\:+\:\dfrac{1}{tan^2\:A}\:\right)\:=\:\dfrac{1}{sin^2\:A\:-\:{sin^4\:A}}}

Solution:-

 \sf \large \: Identity : sec {}^{2} A−tan {}^{2} A=1

 \sf \large L.HS. = (1 + tan {}^{2} A)(1 +  \frac{1}{tan {}^{2}A } )

 \sf \large = (sec {}^{2} A) \frac{sec {}^{2}A }{tan {}^{2}A }

 \sf \large =  \frac{1}{cos {}^{2} A}  \:  \frac{1}{ \frac{cos {}^{2}A }{ \frac{sin  {}^{2}A }{cos {}^{2}A } } }

 \sf \large =  \frac{1}{sin {}^{2} A \: cos {}^{2} A}

 \sf \large =  \frac{1}{sin {}^{2} A(1 - sin {}^{2}A) }

 \sf \large =  \frac{1}{sin {}^{2} A - sin {}^{4} A}

Answer:-

 \sf \: { \boxed{ \sf \red{Hence, Proved \:  that = L.H.S. = R.H.S.}}} \\  \\  \sf \large{ \boxed{ \sf \green{(1 + tan {}^{2} A) +  \bigg(1 +  \frac{1}{tan {}^{2}A } \bigg) =  \frac{1}{sin {}^{2} A - sin {}^{4} A}  .}}}

Hope you have satisfied.

Similar questions