Prove that:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Hi,
Consider 2 + tan²A + 1/tan²A
= (1 + tan²A) + ( 1 + 1/tan²A)
= sec²A + (1 + tan²A)/tan²A
= sec²A + sec²A/tan²A
= sec²A(1 + 1/tan²A)
= sec²A( 1 + tan²A)/tan²A
sec⁴A/tan²A
=(1/cos⁴A)/(sin²A/cos²A)
= 1/sin²Acos²A
=1/sin²A(1-sin²A)
=1/sin²A - sin⁴A
= R.H.S
Hence, Proved !
Hope, it helps !
Answered by
0
Solution :
*************************************
We know that ,
i )cotA = 1/tanA
ii ) 1 + cot²A = cosec²A
iii ) cosecA = 1/sinA
*********************************
Now,
LHS = tan²A+ 1/tan²A + 2
= tan²A + cot²A + 2tanAcotA
= ( tanA + cotA )²
= ( 1/cotA + cotA )²
=[ ( 1 + cot²A )/cotA ]²
= [ cosec²A /cot A ]²
= cosec⁴A /cot²A
= ( cosec⁴A )/( cosec² A - 1 )
= ( 1/sin⁴A )/[ ( 1/sin²A ) - 1 ]
= (1/sin⁴A )/[ ( 1 - sin²A )/sin²A ]
= 1/[ sin²A ( 1 - sin²A )]
= 1/( sin²A - sin⁴A )
= RHS
••••••
*************************************
We know that ,
i )cotA = 1/tanA
ii ) 1 + cot²A = cosec²A
iii ) cosecA = 1/sinA
*********************************
Now,
LHS = tan²A+ 1/tan²A + 2
= tan²A + cot²A + 2tanAcotA
= ( tanA + cotA )²
= ( 1/cotA + cotA )²
=[ ( 1 + cot²A )/cotA ]²
= [ cosec²A /cot A ]²
= cosec⁴A /cot²A
= ( cosec⁴A )/( cosec² A - 1 )
= ( 1/sin⁴A )/[ ( 1/sin²A ) - 1 ]
= (1/sin⁴A )/[ ( 1 - sin²A )/sin²A ]
= 1/[ sin²A ( 1 - sin²A )]
= 1/( sin²A - sin⁴A )
= RHS
••••••
Similar questions
Business Studies,
7 months ago
English,
7 months ago
Biology,
1 year ago
Chemistry,
1 year ago
Hindi,
1 year ago