Math, asked by palak388, 1 year ago

Prove that -

 \bf{ \frac{sin \: a - cos \: a + 1}{sin \: a + cos \: a - 1}  =  \frac{1}{sec \: a - tan \: a} }

No irrelevant answers.

Step wise explanation needed.

Answers

Answered by kumaravinash14121998
9
L.H.S.

{(sina - cosa + 1)/ cosa } / {(sina + cosa - 1) / cosa}

= {tana - 1 + seca} / { tana + 1 - seca}

={tana + seca - 1} / {tana - seca + sec^2a - tan^2a}

= {tana + seca - 1} / (seca - tana) (tana + seca - 1)

= 1 / (seca - tana) = R.H.S.

since, sec^2a - tan^2a = 1

Hence, L.H.S.= R.H.S.

So, I hope it may help you mate.

kumaravinash14121998: as per your question my answer is right .
palak388: Ok! Fine
kumaravinash14121998: you reported my answer
kumaravinash14121998: ??????
palak388: Juzz chill! It won't be deleted :)
kumaravinash14121998: no no I'm just asking
kumaravinash14121998: you can try and write my answer on a paper you'll definitely get your point
kumaravinash14121998: please try it once.. it's my humble request
kumaravinash14121998: hiiiii
kumaravinash14121998: palak
Answered by SillySam
18
Dividing by Cos Ø.

 \bf \implies{  \frac{ \frac{sin \: a}{cos \: a}  -  \frac{cos \: a }{cos \: a} +  \frac{1}{cos \: a}  }{  \frac{sin \: a}{cos \: a} +  \frac{cos \: a}{cos \: a}  - \frac{1}{cos \: a}  } }


 \bf{ \implies \: \frac{tan \: a - 1 + sec \: a}{tan \: a + 1 - sec \: a} }



 \bf{ \implies \:  \frac{tan \: a + sec \: a - 1}{tan \: a - sec \: a + 1} }



 \bf{ \implies  \frac{tan \: a \:  + sec \: a - ( {sec}^{2}a -  {tan}^{2}a)  }{tan \:  - sec \: a + 1} }



 \bf{ \implies \frac{sa c \: a + tan \: a - (sec \: a + tan \: a)(sec \: a - tan \: a)}{tan \: a - sec \: a + 1} }



 \bf{ \implies \frac{sec \: a + tan \: a(1 - (sec \: a - tan \: a))}{tan \: a - sec \: a + 1}}



 \bf{ \implies\frac{ sec \: a + tan \: a( \cancel{1 - sec \: a + tan \: a})}{ \cancel{tan \: a - sec \: a + 1}}}


 \bf{ \implies \: sec \: a + tan \: a}


 \bf{ \implies  \frac{sec \: a + tan \: a \: (sec \: a  - tan \: a)}{sec \: a - tan \: a} }


 \bf{ \implies \:   \frac{{sec}^{2}a -  {tan}^{2}  a}{sec \: a - tan \: a}}


 \bf{ \implies{ \frac{1}{sec \: a - tan \: a} }}


As, sec^2 A - Tan^2 A =1

vikram991: add in message box बहना
Similar questions