Math, asked by MichWorldCutiestGirl, 8 days ago

Prove that:

\boxed{\lim \limits_{x \to a} \dfrac{x^n - a^n}{x-a} = n x^{n-1} } \  \textless \ br /\  \textgreater \
Without using L'Hôpital's rule.​

DON'T SPAM!​

Answers

Answered by user0888
17

\huge\text{\underline{\underline{Question}}}

*Check the typo.

\text{$\boxed{\displaystyle\lim_{x\to a}\dfrac{x^{n}-a^{n}}{x-a}=na^{n-1}}$}

\huge\text{\underline{\underline{Explanation}}}

Substituting \text{$x=a$} to x^{n}-a^{n} gives \text{$a^{n}-a^{n}=0$}.

\Large\text{\{Factor theorem\}}

\large\text{$\boxed{\text{Explanation}}$}

The factor theorem states that a polynomial \text{$f(x)$} is divisible by \text{$(x-a)$} if \text{$f(a)=0$}. The converse also holds.

x^{n}-a^{n} is divisible by (x-a) from factor theorem.

It factorizes to, -

\text{$\cdots\longrightarrow\boxed{x^{n}-a^{n}=(x-a)Q(x)}$}

\text{$(Q(x)$ is the quotient of the division.)}

By actual division from synthetic division, we can observe that -\text{$\cdots\longrightarrow\boxed{Q(x)=x^{n-1}+ax^{n-2}+a^{2}x^{n-3}+\cdots+a^{n-1}}$}

The proof for the equation is -

\text{$\cdots\longrightarrow\boxed{\begin{aligned}&xQ(x)=x^{n}+&ax^{n-1}+&a^{2}x^{n-2}+&\cdots+&a^{n-1}x\\&aQ(x)=&ax^{n-1}+&a^{2}x^{n-2}+&\cdots+&a^{n-1}x+a^{n}\end{aligned}}$}

\text{$\cdots\longrightarrow\boxed{(x-a)Q(x)=x^{n}-a^{n}}$}

Hence we proved that, -

\text{$\cdots\longrightarrow\boxed{Q(x)=x^{n-1}+ax^{n-2}+a^{2}x^{n-3}+\cdots+a^{n-1}}$}

\Large\text{\{Limits\}}

\large\text{$\boxed{\text{Explanation}}$}

The limiting value is the specified value of the function that approaches to, as variable approaches one value.

Let us find the limiting value.

Given limit

\text{$=\displaystyle\lim_{x\to a}\dfrac{x^{n}-a^{n}}{x-a}$}

\text{$=\displaystyle\lim_{x\to a}\dfrac{(x-a)Q(x)}{x-a}$}

\text{$=\displaystyle\lim_{x\to a}Q(x)$}

\text{$=\displaystyle\lim_{x\to a}\left(x^{n-1}+ax^{n-2}+a^{2}x^{n-3}+\cdots+a^{n-1}\right)$}

\text{$=na^{n-1}$}

\huge\text{\underline{\underline{Deeper guide}}}

This fact is used in derivatives also. Let us prove the derivatives of polynomials.

\text{$\bullet\ \displaystyle\lim_{x\to a}\left\{f(x)+g(x)\right\}=\lim_{x\to a}f(x)+\lim_{x\to a}g(x)$}

\text{$\bullet\ \displaystyle\lim_{x\to a}kf(x)=k\lim_{x\to a}f(x)$}

\text{$\bullet\ \displaystyle\lim_{x\to a}\dfrac{x^{n}-a^{n}}{x-a}=na^{n-1}$}

Let the polynomial be -

\text{$\cdots\longrightarrow P(x)=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\cdots+a_{n}x^{0}$}

The derivative \text{$P'(x)$} at \text{$x=a$} is \text{$P'(a)$}.

\text{$P'(a)$}

\text{$\displaystyle=\lim_{x\to a}\dfrac{P(x)-P(a)}{x-a}$}

\text{$=\displaystyle\lim_{x\to a}\left(a_{0}\cdot\dfrac{x^{n}-a^{n}}{x-a}+a_{1}\cdot\dfrac{x^{n-1}-a^{n-1}}{x-a}+a_{2}\cdot\dfrac{x^{n-2}-a^{n-2}}{x-a}+\cdots+a_{n}\cdot\dfrac{x^{0}-a^{0}}{x-a}\right)$}

\text{$=\displaystyle\lim_{x\to a}\left(a_{0}\cdot\dfrac{x^{n}-a^{n}}{x-a}\right)+\cdots+\lim_{x\to a}\left(a_{n}\cdot\dfrac{x^{0}-a^{0}}{x-a}\right)$}

\text{$=\displaystyle a_{0}\lim_{x\to a}\left(\dfrac{x^{n}-a^{n}}{x-a}\right)+\cdots+a_{n}\lim_{x\to a}\left(\cdot\dfrac{x^{0}-a^{0}}{x-a}\right)$}

\text{$=\displaystyle a_{0}\cdot na^{n-1}+a_{1}\cdot (n-1)a^{n-2}+a_{2}\cdot (n-2)a^{n-3}+\cdots+a_{n}\cdot0$}

\text{$=(a_{0}x^{n})'+(a_{1}x^{n-1})'+(a_{2}x^{n-2})'+\cdots+(a_{n}x^{0})'\text{ at }x=a$}

Hence we proved the derivatives of polynomials.

Similar questions