prove that
Answers
Answered by
126
Given:-
To Prove:-
Formulae Used:-
Proof:-
Given that cos²θ ( 1 + tan²θ) = 1.
Let us simply LHS and try to obtain RHS :
LHS
= cos²θ ( 1 + tan²θ ) .
= cos²θ ( 1 + sin²θ/cos²θ ).
= cos²θ ( cos²θ + sin²θ / cos²θ ).
= cos²θ ( sin²θ + cos²θ / cos²θ).
= cos²θ × 1/cos²θ .
= 1.
= RHS .
Hence Proved : )
More to know:-
Here are some more identities :-
sin²θ + cos²θ = 1.
sec²θ -tan²θ = 1.
cosec²θ - cot²θ = 1.
Trigonometric Ratios of Compound Angles:-
sin(A+B)=sinA.cosB+cosA.sinB
sin(A-B)=sinA.cosB-cosA.sinB
cos(A-B)=cosA.cosB+sinA.sinB
cos(A+B)=cosA.cosB-sinA.sinB
tan(A+B)=tanA+tanB/1-tanA.tanB
tan(A-B)=tanA-tanB/1+tanA.tanB
Similar questions
Computer Science,
4 months ago
English,
4 months ago
Science,
4 months ago
Math,
9 months ago
English,
9 months ago