Math, asked by cvsaikrishna0712, 9 months ago

prove that
cos^2(1 + tan ^2) = 1

Answers

Answered by RISH4BH
126

Given:-

  • \tt{cos^2\theta(1+tan^2\theta)=1}

To Prove:-

  • \tt{LHS = RHS} .

Formulae Used:-

  • \tt{\red{sin^2\theta+cos^2\theta=1}}
  • \tt{\red{\tan^2=\dfrac{\sin^2\theta}{\cos^2\theta}}}

Proof:-

Given that cos²θ ( 1 + tan²θ) = 1.

Let us simply LHS and try to obtain RHS :

LHS

= cos²θ ( 1 + tan²θ ) .

= cos²θ ( 1 + sin²θ/cos²θ ).

= cos²θ ( cos²θ + sin²θ / cos²θ ).

= cos²θ ( sin²θ + cos²θ / cos²θ).

= cos²θ × 1/cos²θ .

= 1.

= RHS .

Hence Proved : )

More to know:-

Here are some more identities :-

\bullet sin²θ + cos²θ = 1.

\bullet sec²θ -tan²θ = 1.

\bullet cosec²θ - cot²θ = 1.

Trigonometric Ratios of Compound Angles:-

\bulletsin(A+B)=sinA.cosB+cosA.sinB

\bulletsin(A-B)=sinA.cosB-cosA.sinB

\bullet cos(A-B)=cosA.cosB+sinA.sinB

\bullet cos(A+B)=cosA.cosB-sinA.sinB

\bullet tan(A+B)=tanA+tanB/1-tanA.tanB

\bullet tan(A-B)=tanA-tanB/1+tanA.tanB

Similar questions