Prove that :-
_____________________
Answers
Answer:
12−(12–√×3–√2−12–√×12)2
12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2
12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)
12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)
12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28
12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8
12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4
12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4=2−(2+3–√)4
12−(12–√×3–√2−12–√×12)2 =12−(3–√22–√−122–√)2=12−(3–√−122–√)= 12−((3–√−1)28)=12−(3–√−1)28=12−4−23–√8=12−2−3–√4=2−(2+3–√)4=3–√4=RHS