Math, asked by chandavedic, 6 days ago

Prove that

  {cos}^{2} x +  {cos}^{2} (x +  \frac{\pi}{3}) +  {cos}^{2}(x -  \frac{\pi}{3}) =  \frac{3}{2}
without using formulae of multiple angles.

Answers

Answered by mathdude500
41

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: {cos}^{2} x + {cos}^{2}\bigg (x + \dfrac{\pi}{3}\bigg) + {cos}^{2}\bigg(x - \dfrac{\pi}{3}\bigg) \\

Let consider

\rm \:  {cos}^{2}\bigg (x + \dfrac{\pi}{3}\bigg)  \\

\rm \: =  \:  {\bigg(cos\bigg(x + \dfrac{\pi}{3}\bigg)\bigg) }^{2}

\rm \: =  \:  {\bigg(cosx \: cos\dfrac{\pi}{3} -   \: sinx \: sin\dfrac{\pi}{3}\bigg) }^{2}  \\

\rm \: =  \:  {\bigg(\dfrac{1}{2}cosx - \dfrac{ \sqrt{3} }{2}sinx\bigg) }^{2}  \\

\rm\implies \: {cos}^{2}\bigg(x + \dfrac{\pi}{3} \bigg)  =  \:  {\bigg(\dfrac{1}{2}cosx - \dfrac{ \sqrt{3} }{2}sinx\bigg) }^{2} -  - (1)  \\

Now, Consider

\rm \:  {cos}^{2}\bigg (x  -  \dfrac{\pi}{3}\bigg)  \\

\rm \: =  \:  {\bigg(cos\bigg(x  -  \dfrac{\pi}{3}\bigg)\bigg) }^{2}

\rm \: =  \:  {\bigg(cosx \: cos\dfrac{\pi}{3}  +  \: sinx \: sin\dfrac{\pi}{3}\bigg) }^{2}  \\

\rm \: =  \:  {\bigg(\dfrac{1}{2}cosx +  \dfrac{ \sqrt{3} }{2}sinx\bigg) }^{2}  \\

\rm\implies \: {cos}^{2}\bigg(x -  \dfrac{\pi}{3} \bigg)  =  \:  {\bigg(\dfrac{1}{2}cosx +  \dfrac{ \sqrt{3} }{2}sinx\bigg) }^{2} -  - (2)  \\

Now, on substituting these in LHS,

\rm \: {cos}^{2} x + {cos}^{2}\bigg (x + \dfrac{\pi}{3}\bigg) + {cos}^{2}\bigg(x - \dfrac{\pi}{3}\bigg) \\

\rm \: =  \:  {cos}^{2}x + {\bigg(\dfrac{1}{2}cosx  -  \dfrac{ \sqrt{3} }{2}sinx\bigg) }^{2} + {\bigg(\dfrac{1}{2}cosx +  \dfrac{ \sqrt{3} }{2}sinx\bigg) }^{2} \\

We know,

\boxed{\sf{  \:\rm \:  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2}) \: \:  }} \\

So, using this identity, we get

\rm \: =  \:  {cos}^{2}x + 2\bigg[\dfrac{1}{4}  {cos}^{2}x  +  \dfrac{3}{4} {sin}^{2}x \bigg]

\rm \: =  \:  {cos}^{2}x + \dfrac{1}{2}  {cos}^{2}x  +  \dfrac{3}{2} {sin}^{2}x  \\

\rm \: =  \:   \dfrac{3}{2}  {cos}^{2}x  +  \dfrac{3}{2} {sin}^{2}x  \\

\rm \: =  \:   \dfrac{3}{2} \bigg( {cos}^{2}x  + {sin}^{2}x\bigg)  \\

\rm \: =  \:   \dfrac{3}{2}  \\

Hence,

\boxed{{\:\rm \: {cos}^{2} x + {cos}^{2}\bigg (x + \dfrac{\pi}{3}\bigg) + {cos}^{2}\bigg(x - \dfrac{\pi}{3}\bigg) =  \frac{3}{2} \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\sf{  \:\rm \: cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny \:  \: }} \\

\boxed{\sf{  \:\rm \: cos(x  -  y) = cosx \: cosy \: +   \: sinx \: siny \:  \: }} \\

\boxed{\sf{  \:\rm \: cos\dfrac{\pi}{3} =  \frac{1}{2}  \:  \: }} \\

\boxed{\sf{  \:\rm \: sin\dfrac{\pi}{3} =  \frac{ \sqrt{3} }{2}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \: sin(x + y) = sinxcosy + sinycosx \: }} \\

\boxed{\sf{  \:\rm \: sin(x  -  y) = sinxcosy  -  sinycosx \: }} \\

\boxed{\sf{  \:\rm \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}  \:  \: }} \\

\boxed{\sf{  \:\rm \: tan(x - y) =  \frac{tanx - tany}{1 + tanx \: tany}  \:  \: }} \\

Answered by talpadadilip417
34

Step-by-step explanation:

 \pmb{ \text{LHS \( \tt =\cos ^{2} x+\cos ^{2}\left(x+\dfrac{\pi}{3}\right)+\cos ^{2}\left(x-\dfrac{\pi}{3}\right) \)}}

 \pmb{  \tt=\left(\dfrac{1+\cos 2 x}{2}\right)+\left[\dfrac{1+\cos 2\left(x+\dfrac{\pi}{3}\right)}{2}\right]+\left[\dfrac{1+\cos 2\left(x-\dfrac{\pi}{3}\right)}{2}\right]}

 \tt=\dfrac{1}{2}\left[1+\cos 2 x+1+\cos 2\left(x+\dfrac{\pi}{3}\right)\right]+1+\cos 2\left(x-\dfrac{\pi}{3}\right)

 \tt=\dfrac{1}{2}\left[3+\cos 2 x+\cos 2\left(x+\dfrac{\pi}{3}\right)+\cos 2\left(x-\dfrac{\pi}{3}\right)\right]

\text{Using \( \tt \cos x+\cos y=2 \cos \left(\dfrac{x+y}{2}\right) \cos \left(\dfrac{x-y}{2}\right) \)}

\text{Replace \( \tt x \) by \( \tt \left(2 x+\dfrac{2 \pi}{3}\right) \) and \( \tt y \) by \( \tt 2 x-\dfrac{2 \pi}{3} \)}

 \tt=\dfrac{1}{2}\left[3+\cos 2 x+2 \cos \left(\dfrac{2 x+\dfrac{2 \pi}{3}+2 x-\dfrac{2 \pi}{3}}{2}\right)\right.  \left.\cos \left(\dfrac{2 x+\dfrac{2 \pi}{3}-\left(2 x-\dfrac{2 \pi}{3}\right)}{2}\right)\right]

 \color{darkcyan} \pmb{ \begin{aligned}=& \tt \frac{1}{2}\left[3+\cos 2 x+\cos \left(\frac{4 x}{2}\right) \cos \left(\frac{4 \pi}{\frac{3}{2}}\right)\right] \\ \\ =&  \tt\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(\frac{2 \pi}{3}\right)\right] \\ \\ =& \tt \frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(\pi-\frac{\pi}{3}\right)\right] \\ \\ =& \tt \frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x\left(-\cos \left(\frac{\pi}{3}\right)\right)\right] \\  \\ &[\text { using } \tt \cos (\pi-\theta)=-\cos \theta] \\ \\ =&  \tt\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x\left(-\frac{1}{2}\right)\right] \\ \\ =& \tt \frac{1}{2}[3+\cos 2 x-\cos 2 x] \\ \\ =&  \tt\frac{3}{2}=\text { RHS } \end{aligned} }

Similar questions