Math, asked by laksanyasenthil4074, 1 year ago

Prove that cos\frac{2\pi}{7} . cos\frac{4\pi}{7} . cos\frac{8\pi}{7} = \frac{1}{8} .

Answers

Answered by VemugantiRahul
1
Hi there!
Here's the answer:.

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°•

¶ POINTS TO REMEMBER :

 Sin(2A) = 2 Sin A. CosA

 Sin(2\pi+x) = sin x

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°•

¶¶¶ SOLUTION:

Let
 P = cos(\frac{2\pi}{7}) . cos(\frac{4\pi}{7}) . cos(\frac{8\pi}{7})

Multiply and Divide by 8 sin(\frac{2\pi}{7}) and group the terms

=> P = [\frac{1}{8sin(\frac{2\pi}{7})}] × [ 2 sin(\frac{2\pi}{7}) . cos(\frac{2\pi}{7})] ×[4 cos (\frac{4\pi}{7}) . cos(\frac{8\pi}{7})]

Apply 2 Sin A Cos A= Sin 2A

=> P = [\frac{1}{8sin(\frac{2\pi}{7})}] × [ sin(\frac{4\pi}{7})] ×[4 cos (\frac{4\pi}{7}) . cos(\frac{8\pi}{7})]

=> P = [\frac{1}{8sin(\frac{2\pi}{7})}] × [2 sin(\frac{4\pi}{7}) . cos(\frac{4\pi}{7})] × [2 cos(\frac{8\pi}{7})]

=> P = [\frac{1}{8sin(\frac{2\pi}{7})}] × [2 sin(\frac{4\pi}{7}) . cos(\frac{4\pi}{7})] × [2 cos(\frac{8\pi}{7})]

=> P = [\frac{1}{8sin(\frac{2\pi}{7})}] × [ sin(\frac{8\pi}{7})] × [2 cos(\frac{8\pi}{7})]

=> P = [\frac{1}{8sin(\frac{2\pi}{7})}] × [2 sin(\frac{8\pi}{7}). cos(\frac{8\pi}{7})]

=> P = [\frac{1}{8sin(\frac{2\pi}{7})}] × [sin(\frac{16\pi}{7})]

Here,

 sin(\frac{16\pi}{7}) = sin(2\pi + \frac{2\pi}{7})

=> sin(\frac{16\pi}{7})= sin(\frac{2\pi}{7})

•°•

P = \frac{sin(\frac{2\pi}{7})}{8×sin(\frac{2\pi}{7})}

•°•  P = \frac{1}{8}

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°•
Similar questions