Math, asked by patrarajendra42, 3 months ago

prove that :
cot \alpha  + tan \alpha  = cosec  \alpha  \times sec \alpha

Answers

Answered by Anonymous
8

\huge\mathfrak\red{Given:-}

cot \alpha + tan \alpha = cosec \alpha \times sec \alpha

\huge\mathcal\blue{Solution:-}

\huge\mathcal\red{Iñ \: LHS:-}

cot \alpha + tan \alpha

cot \alpha = \text{$\frac{cos \alpha}{sin \alpha}$}

tan \alpha = \text{$\frac{sin \alpha}{cos \alpha}$}

\text{$\frac{cos^2 \alpha + sin^2 \alpha}{sin \alpha cos \alpha}$}

cos ^2\alpha + sin^2\alpha = 1

\text{$\frac{1}{cos \alpha ×sin \alpha}$}

\text{$\frac{1}{cos \alpha}$}×\text{$\frac{1}{sin \alpha}$}

\text{$\frac{1}{sin \alpha}$} = cosec \alpha

and ;

\text{$\frac{1}{cos \alpha}$} = sec \alpha

So,

cosec \alpha × sec \alpha

\mathcal\red{LHS \: is \: equal \: to \: RHS}

Answered by sangrardanga4562
1

Step-by-step explanation:

this is a correct answer

Attachments:
Similar questions