Prove that:
Answers
Answered by
0
Answer:
Correct option is
A
I=4
Consider the given integral.
I=∫
0
π
2+2cosθ
dθ
We know that
cosx=2cos
2
2
x
−1
Therefore,
I=∫
0
π
2+2(2cos
2
2
θ
−1)
dθ
I=∫
0
π
2+4cos
2
2
θ
−2
dθ
I=∫
0
π
4cos
2
2
θ
dθ
I=2∫
0
π
cos
2
θ
dθ
I=2
⎝
⎜
⎜
⎛
2
1
sin
2
θ
⎠
⎟
⎟
⎞
0
π
I=4(sin
2
θ
)
0
π
I=4(sin
2
π
−sin0)
I=4(1−0)
I=4
Hence, this is the answer.
Similar questions