Math, asked by shatakshi1778918, 5 hours ago

Prove that
\frac{1}{3-\sqrt{8} } - \frac{1}{\sqrt{8}-\sqrt{7} } +\frac{1}{\sqrt{7}-\sqrt{6} } -\frac{1}{\sqrt{6} -\sqrt{5} } + \frac{1}{\sqrt{5} -2} =5

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{3-\sqrt{8} } - \dfrac{1}{\sqrt{8}-\sqrt{7} } +\dfrac{1}{\sqrt{7}-\sqrt{6} } -\dfrac{1}{\sqrt{6} -\sqrt{5} } + \dfrac{1}{\sqrt{5} -2}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{3 -  \sqrt{8} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{3 -  \sqrt{8} }  \times \dfrac{3 +  \sqrt{8} }{3 +  \sqrt{8} }

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{ {3}^{2}  -  {( \sqrt{8}) }^{2} }

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{9 - 8}

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{1}

\rm \:  =  \: 3 +  \sqrt{8}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{8} -  \sqrt{7} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{8} -  \sqrt{7}  }  \times \dfrac{ \sqrt{8}  +  \sqrt{7} }{ \sqrt{8}  +  \sqrt{7} }

\rm \:  =  \: \dfrac{ \sqrt{8} +  \sqrt{7}  }{8 - 7}

\rm \:  =  \:  \sqrt{8} +  \sqrt{7}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{7} -  \sqrt{6}  }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{7}  -  \sqrt{6} }  \times \dfrac{ \sqrt{7} +  \sqrt{6}  }{ \sqrt{7} +  \sqrt{6}  }

\rm \:  =  \: \dfrac{ \sqrt{7}  +  \sqrt{6} }{7 - 6}

\rm \:  =  \:  \sqrt{7} +  \sqrt{6}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{6}  -  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{6}  -  \sqrt{5} }  \times \dfrac{ \sqrt{6}  +  \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }

\rm \:  =  \: \dfrac{ \sqrt{6} + \sqrt{5} }{6 - 5}

\rm \:  =  \:  \sqrt{6} +  \sqrt{5}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{5}  - 2}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{5}  - 2}  \times \dfrac{ \sqrt{5}  + 2}{ \sqrt{5}  + 2}

\rm \:  =  \: \dfrac{ \sqrt{5} + 2 }{5 - 4}

\rm \:  =  \: \dfrac{ \sqrt{5} + 2 }{1}

\rm \:  =  \:  \sqrt{5} + 2

Hence,

\rm :\longmapsto\:\dfrac{1}{3-\sqrt{8} } - \dfrac{1}{\sqrt{8}-\sqrt{7} } +\dfrac{1}{\sqrt{7}-\sqrt{6} } -\dfrac{1}{\sqrt{6} -\sqrt{5} } + \dfrac{1}{\sqrt{5} -2}

\rm \:  =  \: (3 +  \sqrt{8}) - ( \sqrt{8} +  \sqrt{7}) + ( \sqrt{7} +  \sqrt{6}) - ( \sqrt{6} +  \sqrt{5}) + ( \sqrt{5} + 2)

\rm \:  =  \: 3 +  \sqrt{8}- \sqrt{8} -  \sqrt{7} + \sqrt{7} +  \sqrt{6} -\sqrt{6}  -  \sqrt{5} + \sqrt{5} + 2

\rm \:  =  \: 3 + 2

\rm \:  =  \: 5

Hence,

\boxed{\sf{\dfrac{1}{3-\sqrt{8} } - \dfrac{1}{\sqrt{8}-\sqrt{7} }+\dfrac{1}{\sqrt{7}-\sqrt{6} } -\dfrac{1}{\sqrt{6} -\sqrt{5} }+\dfrac{1}{\sqrt{5} -2} = 5}}

Answered by OoAryanKingoO78
1

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{3-\sqrt{8} } - \dfrac{1}{\sqrt{8}-\sqrt{7} } +\dfrac{1}{\sqrt{7}-\sqrt{6} } -\dfrac{1}{\sqrt{6} -\sqrt{5} } + \dfrac{1}{\sqrt{5} -2}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{3 -  \sqrt{8} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{3 -  \sqrt{8} }  \times \dfrac{3 +  \sqrt{8} }{3 +  \sqrt{8} }

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{ {3}^{2}  -  {( \sqrt{8}) }^{2} }

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{9 - 8}

\rm \:  =  \: \dfrac{3 +  \sqrt{8} }{1}

\rm \:  =  \: 3 +  \sqrt{8}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{8} -  \sqrt{7} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{8} -  \sqrt{7}  }  \times \dfrac{ \sqrt{8}  +  \sqrt{7} }{ \sqrt{8}  +  \sqrt{7} }

\rm \:  =  \: \dfrac{ \sqrt{8} +  \sqrt{7}  }{8 - 7}

\rm \:  =  \:  \sqrt{8} +  \sqrt{7}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{7} -  \sqrt{6}  }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{7}  -  \sqrt{6} }  \times \dfrac{ \sqrt{7} +  \sqrt{6}  }{ \sqrt{7} +  \sqrt{6}  }

\rm \:  =  \: \dfrac{ \sqrt{7}  +  \sqrt{6} }{7 - 6}

\rm \:  =  \:  \sqrt{7} +  \sqrt{6}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{6}  -  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{6}  -  \sqrt{5} }  \times \dfrac{ \sqrt{6}  +  \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }

\rm \:  =  \: \dfrac{ \sqrt{6} + \sqrt{5} }{6 - 5}

\rm \:  =  \:  \sqrt{6} +  \sqrt{5}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{5}  - 2}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{5}  - 2}  \times \dfrac{ \sqrt{5}  + 2}{ \sqrt{5}  + 2}

\rm \:  =  \: \dfrac{ \sqrt{5} + 2 }{5 - 4}

\rm \:  =  \: \dfrac{ \sqrt{5} + 2 }{1}

\rm \:  =  \:  \sqrt{5} + 2

Hence,

\rm :\longmapsto\:\dfrac{1}{3-\sqrt{8} } - \dfrac{1}{\sqrt{8}-\sqrt{7} } +\dfrac{1}{\sqrt{7}-\sqrt{6} } -\dfrac{1}{\sqrt{6} -\sqrt{5} } + \dfrac{1}{\sqrt{5} -2}

\rm \:  =  \: (3 +  \sqrt{8}) - ( \sqrt{8} +  \sqrt{7}) + ( \sqrt{7} +  \sqrt{6}) - ( \sqrt{6} +  \sqrt{5}) + ( \sqrt{5} + 2)

\rm \:  =  \: 3 +  \sqrt{8}- \sqrt{8} -  \sqrt{7} + \sqrt{7} +  \sqrt{6} -\sqrt{6}  -  \sqrt{5} + \sqrt{5} + 2

\rm \:  =  \: 3 + 2

\rm \:  =  \: 5

Hence,

\boxed{\sf{\dfrac{1}{3-\sqrt{8} } - \dfrac{1}{\sqrt{8}-\sqrt{7} }+\dfrac{1}{\sqrt{7}-\sqrt{6} } -\dfrac{1}{\sqrt{6} -\sqrt{5} }+\dfrac{1}{\sqrt{5} -2} = 5}}

Similar questions