Prove that = 4
Answers
Answered by
0
LHS = 1/sin10° - √3/cos10°
= (cos10° - √3sin10°)/sin10° cos10°
= 2(1/2 cos10° - √3/2 sin10°)/sin10° cos10°
[ we know, cos30° = √3/2
and sin30° = 1/2 ]
= 2 × 2(sin30° cos10° - cos30° sin10°)/(2sin10° cos10°)
from formula,sin30° cos10° - cos30° sin10° = sin(30° -10°) = sin20°
and 2sin10° cos10° = sin20°
= 4sin20°/sin20°
= 4 = RHS [ hence proved]
= (cos10° - √3sin10°)/sin10° cos10°
= 2(1/2 cos10° - √3/2 sin10°)/sin10° cos10°
[ we know, cos30° = √3/2
and sin30° = 1/2 ]
= 2 × 2(sin30° cos10° - cos30° sin10°)/(2sin10° cos10°)
from formula,sin30° cos10° - cos30° sin10° = sin(30° -10°) = sin20°
and 2sin10° cos10° = sin20°
= 4sin20°/sin20°
= 4 = RHS [ hence proved]
Answered by
0
HELLO DEAR,
1/sin10° - √3/cos10°
=> (cos10° - √3sin10°)/sin10° cos10°
=> 2(1/2 cos10° - √3/2 sin10°)/sin10° cos10°
[ we know, cos30° = √3/2 and sin30° = 1/2 ]
=> 2 * 2(sin30° cos10° - cos30° sin10°)/(2sin10° cos10°)
[ as,sin30° cos10° - cos30° sin10° = sin(30° -10°) = sin20° and 2sin10° cos10° = sin20° ]
= 4sin20°/sin20°
= 4
I HOPE IT'S HELP YOU DEAR,
THANKS
1/sin10° - √3/cos10°
=> (cos10° - √3sin10°)/sin10° cos10°
=> 2(1/2 cos10° - √3/2 sin10°)/sin10° cos10°
[ we know, cos30° = √3/2 and sin30° = 1/2 ]
=> 2 * 2(sin30° cos10° - cos30° sin10°)/(2sin10° cos10°)
[ as,sin30° cos10° - cos30° sin10° = sin(30° -10°) = sin20° and 2sin10° cos10° = sin20° ]
= 4sin20°/sin20°
= 4
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions