Math, asked by Anonymous, 7 months ago

Prove that:-

 \frac{ 1+sinA}{1-sinA} = {(secA+tanA)}^{2} \\

Answers

Answered by rajdheerajcreddy
3

Answer is given in the pic.

And don't forget to solve my question.

Attachments:
Answered by Anonymous
108

♣ Qᴜᴇꜱᴛɪᴏɴ :

\boxed{\bf{Prove\:\:\dfrac{1+\sin A}{1-\sin A}=(\sec A+\tan A)^{2}}}

♣ ᴛᴏ Pʀᴏvᴇ :

\sf{\dfrac{1+\sin A}{1-\sin A}=(\sec A+\tan A)^{2}}

♣ ᴀɴꜱᴡᴇʀ :

\bf{\dfrac{1+\sin A}{1-\sin A}=(\sec A+\tan A)^{2}}

Right hand side :

\bf{(\sec A+\tan A)^{2}=\left(\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\right)^{2}}

\sf{=\left(\dfrac{1+\sin A}{\cos A}\right)^{2}}

\sf{=\dfrac{(1+\sin A)^{2}}{\cos ^{2} A}}

\sf{=\dfrac{(1+\sin A)(1+\sin A)}{1-\sin ^{2} A}}

\sf{=\dfrac{(1+\sin A)(1+\sin A)}{(1-\sin A)(1+\sin A)}}

\sf{=\dfrac{1+\sin A}{1-\sin A}}

\boxed{\bf{\bigstar\:\:\dfrac{1+\sin A}{1-\sin A}=(\sec A+\tan A)^{2}}}

Hence Proved !!!

Similar questions