Prove that = cos⁴ A
Answers
Answered by
34
sin(3π - A) = sin{2π + ( π - A)}
= sin(π - A) = sinA
cos(A - π/2) = cos{-(π/2 - A)} = cos(π/2 - A)[as we know, cos(-x) = cosx]
= cos(π/2 - A) = sinA
tan(3π/2 - A) = cotA [ in 3rd quadrant, tan, cot are positive ]
cosec(13π/2 + A) = cosec(6π + π/2 + A)
= cosec(π/2 + A) = -secA
sec(3π + A) = sec(2π + π + A)
= sec(π + A) = -secA
cot(A - π/2) = -cot(π/2 - A) = -tanA
now, LHS = {sin(3π - A)cos(A - π/2)tan(3π/2 - A)}{cosec(13π/2 + A)sec(3π + A)cot(A - π/2)}
= {sinA sinA cotA}/{-secA (-secA)(-tanA)}
= {sin²A cotA}/{sec²A tanA}
= {sin²A × cosA/sinA}/{1/cos²A × sinA/cosA}
= cosA/{1/cos³A}
= cos⁴A = RHS
= sin(π - A) = sinA
cos(A - π/2) = cos{-(π/2 - A)} = cos(π/2 - A)[as we know, cos(-x) = cosx]
= cos(π/2 - A) = sinA
tan(3π/2 - A) = cotA [ in 3rd quadrant, tan, cot are positive ]
cosec(13π/2 + A) = cosec(6π + π/2 + A)
= cosec(π/2 + A) = -secA
sec(3π + A) = sec(2π + π + A)
= sec(π + A) = -secA
cot(A - π/2) = -cot(π/2 - A) = -tanA
now, LHS = {sin(3π - A)cos(A - π/2)tan(3π/2 - A)}{cosec(13π/2 + A)sec(3π + A)cot(A - π/2)}
= {sinA sinA cotA}/{-secA (-secA)(-tanA)}
= {sin²A cotA}/{sec²A tanA}
= {sin²A × cosA/sinA}/{1/cos²A × sinA/cosA}
= cosA/{1/cos³A}
= cos⁴A = RHS
Answered by
23
HELLO DEAR,
we know:-
sin(3π - A) = sin{2π + ( π - A)}
= sin(π - A) = sinA
cos(A - π/2) = cos{-(π/2 - A)} = cos(π/2 - A)
= cos(π/2 - A) = sinA
tan(3π/2 - A) = cotA
cosec(13π/2 + A) = cosec(6π + π/2 + A)
= cosec(π/2 + A) = -secA
sec(3π + A) = sec(2π + π + A)
= sec(π + A) = -secA
cot(A - π/2) = -cot(π/2 - A) = -tanA
now,
{sin(3π - A)cos(A - π/2)tan(3π/2 - A)}{cosec(13π/2 + A)sec(3π + A)cot(A - π/2)}
=> {sinA sinA cotA}/{-secA (-secA)(-tanA)}
=> {sin²A cotA}/{sec²A tanA}
=> {sin²A × cosA/sinA}/{1/cos²A × sinA/cosA}
=> cosA/{1/cos³A}
=> cos⁴A
I HOPE IT'S HELP YOU DEAR,
THANKS
we know:-
sin(3π - A) = sin{2π + ( π - A)}
= sin(π - A) = sinA
cos(A - π/2) = cos{-(π/2 - A)} = cos(π/2 - A)
= cos(π/2 - A) = sinA
tan(3π/2 - A) = cotA
cosec(13π/2 + A) = cosec(6π + π/2 + A)
= cosec(π/2 + A) = -secA
sec(3π + A) = sec(2π + π + A)
= sec(π + A) = -secA
cot(A - π/2) = -cot(π/2 - A) = -tanA
now,
{sin(3π - A)cos(A - π/2)tan(3π/2 - A)}{cosec(13π/2 + A)sec(3π + A)cot(A - π/2)}
=> {sinA sinA cotA}/{-secA (-secA)(-tanA)}
=> {sin²A cotA}/{sec²A tanA}
=> {sin²A × cosA/sinA}/{1/cos²A × sinA/cosA}
=> cosA/{1/cos³A}
=> cos⁴A
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions