Math, asked by arjunb3316, 1 year ago

Prove that \frac{sin 70\textdegree - cos 40\textdegree}{cos 50\textdegree - sin 20\textdegree}  = \frac{1}{\sqrt{3}} .

Answers

Answered by MaheswariS
1

Answer:

\frac{1}{\sqrt{3}}

Step-by-step explanation:

Formula used:

sinC-sinD=2cos(\frac{C+D}{2})sin(\frac{C-D}{2})}


\frac{sin70-cos40}{cos50-sin20}

=\frac{sin70-sin50}{sin40-sin20}

=\frac{2cos(\frac{70+50}{2})sin(\frac{70-50}{2})}{ 2cos(\frac{40+20}{2})sin(\frac{40-20}{2})}

=\frac{2cos60\:sin10}{ 2cos30\:sin10}

=\frac{cos60}{cos30}

=\frac{ \frac{1}{2}}{\frac{\sqrt{3}}{2}}

=\frac{1}{\sqrt{3}}


Similar questions