Math, asked by Anonymous, 11 months ago

prove that

 \frac{ \sin( \alpha ) - \cos( \alpha ) + 1 }{ \sin( \alpha ) + \cos( \alpha ) - 1} = \frac{1}{ \sec( \alpha ) - \tan( \alpha ) }

please solve this

Answers

Answered by Mankuthemonkey01
15

Solution

Taking LHS

\sf\frac{ \sin( \alpha ) - \cos( \alpha ) + 1 }{ \sin( \alpha ) + \cos( \alpha ) - 1}

= \sf\frac{ \sin( \alpha ) - \cos( \alpha ) + 1 }{ \sin( \alpha ) + -(-\cos( \alpha ) + 1)}

= \sf\frac{ \sin( \alpha ) + 1 - \cos( \alpha )}{ \sin( \alpha ) -( 1 - \cos( \alpha ))}

Multiply with \sin( \alpha ) + 1 - \cos( \alpha ) in both numerator and denominator

\sf\frac{ (\sin( \alpha ) + 1 - \cos( \alpha ))(\sin( \alpha ) + 1 - \cos( \alpha ))}{ (\sin( \alpha ) -( 1 - \cos( \alpha ))(\sin( \alpha ) + 1 - \cos( \alpha ))}

Using, (a + b)(a - b) = a² - b²

\frac{(\sin\alpha + 1 - \cos\alpha )^2 }{\sin^2\alpha - (1 - \cos\alpha )^2}

\frac{\sin^2\alpha + \cos^2\alpha + 1 - 2\cos\alpha - 2\cos\alpha \sin\alpha + 2\sin\alpha}{sin^2\alpha - 1 - cos^2\alpha + 2 \cos\alpha}

Using, (a + b - c)² = a² + b² + c² + 2ab - 2bc - 2ac

\sf\frac{1 + 1 - 2\cos\alpha - 2\cos\alpha \sin\alpha + 2\sin\alpha}{-\cos^2\alpha - \cos^2\alpha + 2\cos\alpha}

(since, sin²∅ + cos²∅ = 1 → sin²∅ - 1 = - cos²∅)

\sf\frac{2(1 - \cos\alpha - \cos\alpha \sin\alpha + \sin\alpha)}{2(-\cos^2\alpha + \cos\alpha)}

\sf\frac{1 - \cos\alpha - \cos\alpha \sin\alpha + \sin\alpha}{-\cos^2\alpha + \cos\alpha}

\sf\frac{1(1 - \cos\alpha) + \sin\alpha(1 - \cos\alpha)}{\cos\alpha(1 - \cos\alpha)}

\sf\frac{(1- \cos\alpha)(\sin\alpha + 1)}{(\cos\alpha )(1 - \cos\alpha)}

\sf\frac{\sin\alpha + 1}{\cos\alpha}

\sf\frac{\sin\alpha}{\cos\alpha} + \frac{1}{\cos\alpha}

\sf \tan\alpha + \sec\alpha

(since, sin∅/cos∅ = tan∅ and 1/cos∅ = sec∅)

Multiply with sec∅ - tan∅ in both numerator and denominator

\sf\frac{(\sec\alpha + \tan\alpha)(\sec\alpha - \tan\alpha)}{(\sec\alpha - \tan\alpha}

\sf\frac{\sec^2\alpha - \tan^2\alpha}{\sec\alpha - \tan\alpha}

Now, sec²∅ - tan²∅ = 1

\implies\Large{\frac{1}{\sec\alpha - \tan\alpha}}

Hence Proved.

Similar questions