Prove that
Don't spam
Answers
Answer:
Recall the definitions of the reciprocal trigonometric functions, csc θ, sec θ and cot θ from the trigonometric functions chapter:
\displaystyle \csc{\theta}=\frac{1}{{ \sin{\theta}}}cscθ=
sinθ
1
\displaystyle \sec{\theta}=\frac{1}{{ \cos{\theta}}}secθ=
cosθ
1
\displaystyle \cot{\theta}=\frac{1}{{ \tan{\theta}}}cotθ=
tanθ
1
Now, consider the following diagram where the point (x, y) defines an angle θ at the origin, and the distance from the origin to the point is r units:
Angle on cartesian plane
From the diagram, we can see that the ratios sin θ and cos θ are defined as:
\displaystyle \sin{\theta}=\frac{y}{{r}}sinθ=
r
y
and
\displaystyle \cos{\theta}=\frac{x}{{r}}cosθ=
r
x
Now, we use these results to find an important definition for tan θ:
\displaystyle\frac{{ \sin{\theta}}}{{ \cos{\theta}}}=\frac{{\frac{y}{{r}}}}{{\frac{x}{{r}}}}=\frac{y}{{r}}\times\frac{r}{{x}}=\frac{y}{{x}}
cosθ
sinθ
=
r
x
r
y
=
r
y
×
x
r
=
x
y
Now also \displaystyle \tan{\theta}=\frac{y}{{x}}tanθ=
x
y
, so we can conclude:
\displaystyle \tan{\theta}=\frac{{ \sin{\theta}}}{{ \cos{\theta}}}tanθ=
cosθ
sinθ
Ratios based on Pythagoras' Theorem
Also, for the values in the above diagram, we can use Pythagoras' Theorem and obtain:
y2 + x2 = r2
Dividing through by r2 gives us:
\displaystyle\frac{{y}^{2}}{{r}^{2}}+\frac{{x}^{2}}{{r}^{2}}={1}
r
2
y
2
+
r
2
x
2
=1
so we obtain the important result:
\displaystyle{{\sin}^{2}\ }\theta+{{\cos}^{2}\ }\theta={1}sin
2
θ+cos
2
θ=1
Step-by-step explanation:
hope it helps you.