Math, asked by Ik1018, 6 months ago

prove that:-
 \frac{ \sin(x)  +  \sin(2x) }{1 +  \cos(x)  +  \cos(2x) }   =  \tan(x)

Answers

Answered by VishnuPriya2801
40

Answer:-

To Prove:

  \sf \:  \dfrac{ \sin \: x +  \sin \: 2x}{1 +  \cos \: x +  \cos \: 2x}  =  \tan \: x

Using sin 2x = 2 sin x cos x & cos 2x = 2cos² x - 1 we get,

  \sf \implies \dfrac{ \sin \: x + 2 \sin \: x .\cos \: x}{1 +  2 \cos ^{2}  \:  x \:  - 1+  \cos \: x}  =  \tan \: x  \\  \\

Taking sin x/cos x common in LHS we get,

 \sf \implies \:  \dfrac{ \sin \: x(1 + 2 \cos \: x)}{ \cos \: x(1 + 2 \cos \: x)}  =  \tan \: x \\  \\  \sf \implies \:  \dfrac{ \sin \: x}{ \cos \: x}  =  \tan \: x

Now using sin x/cos x = tan x we get,

→ tan x = tan x

Hence,Proved.

Answered by EnchantedGirl
16

\underline{\underline{\red{To \: Prove:-}}}

\\

\sf \: \dfrac{ \sin \: x + \sin \: 2x}{1 + \cos \: x + \cos \: 2x} = \tan \: x

\\

\underline{\underline{\green{Proof}}}

\\

We know ,

\\

  • sin 2x = 2 sin x cos x
  • cos 2x = 2cos² x - 1

\\

Now,

\\

\begin{gathered}\sf :\implies \dfrac{ \sin \: x + 2 \sin \: x .\cos \: x}{1 + 2 \cos ^{2} \: x \: - 1+ \cos \: x} = \tan \: x \\ \\\end{gathered}

\\

\begin{gathered}\sf :\implies \: \dfrac{ \sin \: x(1 + 2 \cos \: x)}{ \cos \: x(1 + 2 \cos \: x)} = \tan \: x \\ \\ \sf :\implies \: \dfrac{ \sin \: x}{ \cos \: x} = \tan \: x\end{gathered}

\\

Now ,

\\

By sin x/cos x = tan x we get,

\\

tan x = tan x

\\

Hence proved.

________________________

Similar questions