Math, asked by karansinghsaggu, 7 hours ago

Prove that

 \frac{tanx - tany}{tanx + tany}  =  \frac{sin(x - y)}{sin(x + y)}
Class ११ Trigonometry​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{tanx - tany}{tanx + tany}

We know,

 \purple{\rm :\longmapsto\: \boxed{\tt{ \: tanx =  \dfrac{sinx}{cosx}}}}

So, using this identity, we get

\rm \:  =  \: \dfrac{\dfrac{sinx}{cosx}  - \dfrac{siny}{cosy} }{\dfrac{sinx}{cosx}  + \dfrac{siny}{cosy} }

\rm \:  =  \: \dfrac{\dfrac{sinxcosy - sinycosx}{cosx \: cosy}}{ \:  \:  \: \dfrac{sinxcosy \:  +  \: sinycosx}{cosxcosy}   \:  \:  \: }

\rm \:  =  \: \dfrac{sinxcosy - sinycosx}{sinxcosy + sinycosx}

\rm \:  =  \: \dfrac{sin(x - y)}{ \:  \: sin(x + y) \:  \: }

Hence,

\rm\implies \: \boxed{\tt{ \: \dfrac{tanx - tany}{ \:  \: tanx + tany \:  \: }  =  \frac{sin(x - y)}{ \:  \: sin(x + y) \:  \: } }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\boxed{\tt{ sin(x + y) = sinxcosy + sinycosx \: }}

\boxed{\tt{ sin(x  -  y) = sinxcosy  -  sinycosx \: }}

\boxed{\tt{ cos(x + y) = cosxcosy - sinxsiny}}

\boxed{\tt{ cos(x  -  y) = cosxcosy  +  sinxsiny}}

\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanxtany} }}

\boxed{\tt{ tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanxtany} }}

Answered by pdpooja100
1

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{tanx - tany}{tanx + tany}

We know,

\purple{\rm :\longmapsto\: \boxed{\tt{ \: tanx = \dfrac{sinx}{cosx}}}}

So, using this identity, we get

\rm \:  =  \: \dfrac{\dfrac{sinx}{cosx} - \dfrac{siny}{cosy} }{\dfrac{sinx}{cosx} + \dfrac{siny}{cosy} }

\rm \:  =  \: \dfrac{\dfrac{sinxcosy - sinycosx}{cosx \: cosy}}{ \: \: \: \dfrac{sinxcosy \: + \: sinycosx}{cosxcosy} \: \: \: }

\rm \:  =  \: \dfrac{sinxcosy - sinycosx}{sinxcosy + sinycosx }

\rm \:  =  \: \dfrac{sin(x - y)}{ \: \: sin(x + y) \: \: }

Hence,

\rm\implies \: \boxed{\tt{ \: \dfrac{tanx - tany}{ \: \: tanx + tany \: \: } = \frac{sin(x - y)}{ \: \: sin(x + y) \: \: } }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\boxed{\tt{ sin(x + y) = sinxcosy + sinycosx \: }}

\boxed{\tt{ sin(x - y) = sinxcosy - sinycosx \: }}

\boxed{\tt{ cos(x + y) = cosxcosy - sinxsiny}}

\boxed{\tt{ cos(x - y) = cosxcosy + sinxsiny}}

\boxed{\tt{ tan(x + y) = \frac{tanx + tany}{1 - tanxtany} }}

\boxed{\tt{ tan(x - y) = \frac{tanx - tany}{1 + tanxtany} }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions