Math, asked by anindyaadhikari13, 3 months ago

Prove that.,
 \large \boxed{ \sf 0! = 1}

Answers

Answered by IdyllicAurora
32

Concept :-

Here the concept of Permutations has been used. We see that we have to prove if 0! = 1. If we have studied Permutations and Combinations then we already know some formulas. First of the formula is the standard formula of Permutations and the other two formulas are derivatives of the number patterns. So let's prove this question using those three formulas.

Let's do it !!

______________________________________

Formula Used :-

\;\boxed{\sf{\pink{^{n}P_{r}\;=\;\bf{\dfrac{n!}{(n\:-\:r)!}}}}}

\;\boxed{\sf{\pink{n!\;=\;\bf{\dfrac{(n\:+\:1)!}{(n\:+\:1)}}}}}

\;\boxed{\sf{\pink{n!\;=\;\bf{n\:\times\:(n\:-\:1)!}}}}

______________________________________

Solution :-

Let's try proving the given expression by each formula mentioned here seperately.

-----------------------------------------------------------

~ Proof using first formula ::

We know that,

\;\sf{\rightarrow\;\;^{n}P_{r}\;=\;\bf{\dfrac{n!}{(n\:-\:r)!}}}

Let n = 1 and r = 1 here . So,

\;\sf{\rightarrow\;\;^{n}P_{r}\;=\;\bf{\dfrac{1!}{(1\:-\:1)!}}}

\;\sf{\rightarrow\;\;^{n}P_{r}\;=\;\bf{\dfrac{1!}{0!}}}

By defination of Permutations we know that r can never be greater than n . Here since r = n , so Permutation will also be 1 . So,

\;\sf{\rightarrow\;\;1\;=\;\bf{\dfrac{1!}{0!}}}

  • Since 1! = 1

\;\sf{\rightarrow\;\;1\;=\;\bf{\dfrac{1}{0!}}}

\;\sf{\rightarrow\;\;0!\;=\;\bf{\dfrac{1}{1}}}

\;\large{\boxed{\bf{\rightarrow\;\;\green{0!\;=\;\bf{1}}}}}

Hence, proved.

-----------------------------------------------------------

~ Proof using second formula ::

We know that,

\;\sf{\rightarrow\;\;n!\;=\;\bf{\dfrac{(n\:+\:1)!}{(n\:+\:1)}}}

  • Let n = 0

\;\sf{\rightarrow\;\;0!\;=\;\bf{\dfrac{(0\:+\:1)!}{(0\:+\:1)}}}

\;\sf{\rightarrow\;\;0!\;=\;\bf{\dfrac{(1)!}{(1)}}}

  • Since 1! = 1

\;\sf{\rightarrow\;\;0!\;=\;\bf{\dfrac{1}{1}}}

\;\large{\boxed{\bf{\rightarrow\;\;\red{0!\;=\;\bf{1}}}}}

Hence, proved .

-----------------------------------------------------------

~ Proof using third formula ::

We know that,

\;\sf{\rightarrow\;\;n!\;=\;\bf{n\:\times\:(n\:-\:1)!}}

  • Let n = 1

\;\sf{\rightarrow\;\;1!\;=\;\bf{1\:\times\:(1\:-\:1)!}}

\;\sf{\rightarrow\;\;1!\;=\;\bf{1\:\times\:0!}}

\;\sf{\rightarrow\;\;0!\;=\;\bf{\dfrac{1!}{1}}}

  • Since 1! = 1

\;\sf{\rightarrow\;\;0!\;=\;\bf{\dfrac{1}{1}}}

\;\large{\boxed{\bf{\rightarrow\;\;\blue{0!\;=\;\bf{1}}}}}

Hence, proved.

______________________________________

More to know :-

\;\tt{\leadsto\;\;^{n}C_{r}\;=\;\dfrac{n!}{(n\:-\:r)!}}

Answered by pradeeprk77
6

Answer:

Originally answered: how can I prove 0!=1

The factorial of a number is defined as:

= n! = n*(n-1)*(n-2)*(n-3)*...*1n !

= n*(n-1)*(n-2)*(n-3)*...*1

So,

5!=5*4*3*2*1 = 1250! = 5*4*3*2*1 = 120

4! = 4*3*2*1 = 244! = 4*3*2*1 = 24

Hence, it can be observed that:

n! = n*(n-1)! n! = n*(n-1)!

From this equation, substituting 1 from:

1! = 1*(1-1)! 1! 1! = 1

1! = 1*0! 1! = 1*0!

0! = 1/10! = 1/1

0! = 1

It's proved

Step-by-step explanation:

hope it will help you

Similar questions