Math, asked by john4892, 9 months ago

Prove that :
\Large\frac{tanA\:+\:secA\:-\:1}{tanA\:-\:secA\:+\:1}\:=\:\frac{1\:+\:sinA}{cosA}

Answers

Answered by Anonymous
18

To prove:

( tanA + secA -1)/( tanA- secA+1) = (1+sinA)/cosA

Proof:

(tanA - secA) - (sec2A - tan2A)/tanA + 1 - secA

(tanA - secA) (1 - (secA - tanA))/tanA + 1 - secA

(tanA - secA) (1 - secA + tanA)/tanA + 1 - secA

sec A + tan A

1/cosA + sinA/cosA

1 + sinA/cosA

Hence, Proved.

Answered by Anonymous
31

\rule{200}{2}

\huge\tt\underline{QUESTION}\::

\sf Prove \:that

\sf\frac{tanA\:+\:secA\:-\:1}{tanA\:-\:secA\:+\:1}\:=\:\frac{1\:+\:sinA}{cosA}

\rule{200}{2}

\huge\tt\underline{SOLUTION}\::

\sf We\:know\:that,\:sec^{2}A\:-\:tan^{2}A = 1

\sf \longrightarrow  \:  \frac{tanA \:  +  \: secA \:  -  \: ( {sec}^{2}A \:  -  \:  {tan}^{2}A)  }{tanA \:  -  \: secA \:  +  \: 1}

\sf \longrightarrow  \:  \frac{tanA \:  +  \: secA \:  -  \: [(secA \:  +  \: tanA)(secA \:  -  \: tanA) ]}{tana \:  -  \: seca \:  +  \: 1}

\sf \longrightarrow  \:  \frac{(secA \:  +  \: tanA) [1  \:  -  \: (secA \:  -  \: tanA)]}{tanA \:  -  \: secA \:  +  \: 1}

\sf \longrightarrow  \:  \frac{(secA \:  +  \: tanA)(tanA \:  -  \:\cancel{ secA} \:  +  \: 1)}{tanA \:  -  \: \cancel{secA} \:  +  \: 1}

\sf \longrightarrow  \:  \frac{sinA}{cosA}  \:  +  \:  \frac{1}{cosA}

\sf \longrightarrow  \:  \frac{1 \:  +  \: sinA}{cosA}

\sf Hence\:Proved\:!!

\rule{200}{2}

Similar questions