Math, asked by Itzheartcracer, 5 hours ago

Prove that
\sf \left[\begin{array}{ccc}\sf a+x&\sf b&\sf c\\\sf a&\sf b+y&\sf c\\\sf a&\sf b&\sf c+z\end{array}\right] = xyz\bigg(1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}\bigg)
Note
No spam or copied answer

Answers

Answered by mathdude500
17

Appropriate Question :-

Prove that

\rm \:\: \begin{gathered}\sf \left | \begin{array}{ccc}a + x&b& c\\a&b + y& c\\a& b&c + z\end{array}\right | \end{gathered} = xyz\bigg(1 + \dfrac{a}{x}  + \dfrac{b}{y}  + \dfrac{c}{z} \bigg)

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:\rm \:\: \begin{gathered}\sf \left | \begin{array}{ccc}a + x&b& c\\a&b + y& c\\a& b&c + z\end{array}\right | \end{gathered}

Take x common from Column 1, y from Column 2 and z from Column 3, we get

\rm  \:  = \:\:xyz \begin{gathered}\sf \left | \begin{array}{ccc}\dfrac{a}{x} + 1&\dfrac{b}{y}& \dfrac{c}{z} \\ \\\dfrac{a}{x}&\dfrac{b}{y} + 1& \dfrac{c}{z}\\ \\ \dfrac{a}{x}& \dfrac{b}{y}&\dfrac{c}{z} + 1\end{array}\right | \end{gathered}

\rm :\longmapsto\:OP \: C_1 \:  \to \: C_1 + C_2 + C_3

\rm  \:  = \:\:xyz \begin{gathered}\sf \left | \begin{array}{ccc}1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z} &\dfrac{b}{y}& \dfrac{c}{z} \\ \\1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}&\dfrac{b}{y} + 1& \dfrac{c}{z}\\ \\1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z}& \dfrac{b}{y}&\dfrac{c}{z} + 1\end{array}\right | \end{gathered}

\red{ \boxed{ \rm{ \: Take \: out \: 1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z} \: common \: from \: C_1}}}

\rm\:=xyz\bigg(1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z} \bigg) \begin{gathered}\sf \left | \begin{array}{ccc}1 &\dfrac{b}{y}& \dfrac{c}{z} \\ \\1&\dfrac{b}{y} + 1& \dfrac{c}{z}\\ \\1 & \dfrac{b}{y}&\dfrac{c}{z} + 1\end{array}\right | \end{gathered}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \rm{ \: OP \: R_2 \:  \to \: R_2 - R_1}}}

\rm\:=xyz\bigg(1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z} \bigg) \begin{gathered}\sf \left | \begin{array}{ccc}1 &\dfrac{b}{y}& \dfrac{c}{z} \\ \\0&1&0\\ \\1 & \dfrac{b}{y}&\dfrac{c}{z} + 1\end{array}\right | \end{gathered}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \rm{ \: OP \: R_3 \:  \to \: R_3 - R_1}}}

\rm\:=xyz\bigg(1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z} \bigg) \begin{gathered}\sf \left | \begin{array}{ccc}1 &\dfrac{b}{y}& \dfrac{c}{z} \\ \\0&1&0\\ \\0 &0&1\end{array}\right | \end{gathered}

Expand along Column 1, we get

\rm\:=xyz\bigg(1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z} \bigg)(1 - 0)

\rm\:=xyz\bigg(1 + \dfrac{a}{x} + \dfrac{b}{y} + \dfrac{c}{z} \bigg)

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

1. The value of determinant is 0, if every element of row or column is 0.

2. The value of determinant is 0, if any two rows or columns are identical.

3. The value of determinant is multiplied by (- 1) if successive rows or columns are interchanged.

4. The determinant value remains same if rows and columns are interchanged.

Answered by xXStarQueenXx
0

Bruhhhh

DC aaja ek baar...

insta hi aaja

@virhana_vcc_17

Similar questions