Prove that
Answers
Given : Sinx = 2ⁿ sin(x/2ⁿ)Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ)
To find : prove the given identity
Solution:
Sinx = 2ⁿ sin(x/2ⁿ)Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ)
LHS = Sinx
using Sin2θ = 2SinθCosθ
= 2Sin(x/2)Cos(x/2)
= 2* 2 Sin(x/2²)Cos(x/2²)Cos(x/2)
= 2² Sin(x/2²)Cos(x/2).Cos(x/2²)
= 2² (2 Sin(x/2³)Cos(x/2³) Cos(x/2).Cos(x/2²)
= 2³Sin(x/2³)Cos(x/2).Cos(x/2²)Cos(x/2³)
Similarly this way
= 2ⁿ sin(x/2ⁿ)Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ)
QED
or taking form RHS to LHS
RHS = 2ⁿ sin(x/2ⁿ)Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ)
= 2 * 2ⁿ⁻¹ sin(x/2ⁿ)Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ)
= 2ⁿ⁻¹ ( 2 sin(x/2ⁿ) Cos(x/2ⁿ) ( Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ⁻¹) )
= 2ⁿ⁻¹ Sin(x/2ⁿ⁻¹) ( Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ⁻¹) )
= 2ⁿ⁻² ( 2Sin(x/2ⁿ⁻¹)Cos(x/2ⁿ⁻¹) ) ( Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ⁻²) )
= 2ⁿ⁻² Sin(x/2ⁿ⁻²) ( Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ⁻²))
and so on
= 2ⁿ-⁽ⁿ⁻¹⁾ Sin(x/2ⁿ⁻⁽⁻¹⁾) Cos(x/2)
= 2Sin(x/2)Cos(x/2)
= Sinx
QED
Hence Proved
Sinx = 2ⁿ sin(x/2ⁿ)Cos(x/2)Cos(x/2²) .....................Cos(x/2ⁿ)
Learn more:
Prove the following ( sin x - tan x ) Please do explain - Brainly.in
https://brainly.in/question/12563868
prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx
https://brainly.in/question/3338788
sinx-sin5x+sin9x-sin13x/cosx-cos5x -cos9x+cos13x= cot 4x
https://brainly.in/question/12448751
Answer:
hope it is helpful to you