Prove that:
Answers
Step-by-step explanation:
Taking L.H.S,
Use the identities :
- (a+b)(a-b)=a²-b²
- (a+b)(a+b) = (a+b)²
_______________
Some formulas :-
★ sin²A + cos²A = 1
★ 1 + tan²A = sec²A
★1 + cot²A= cosec²A
★ cos²A - sin²A = cos2A
★ sin(A+B) = sinAcosB + cosAsinB
★ sin(A-B) = sinAcosB - cosAsinB
★ cos(A+B) = cosAsinB- sinAsinB
★ cos(A-B) = cosAsinB + sinAsinB
★
★
★ sin2∅ = 2sin∅cos∅
★ cos2∅ = 2cos²∅ - 1
★ cos2∅ = 1 - 2sin²∅
Step-by-step explanation:
Taking L.H.S,
1 - cos(a)
V1+ cos(a)
1+ cos(a) 1+cos(a) 1+ cos(a)
1-cos(a)
Use the identities :
• (a+b)(a-b)=a²-b? (a+b)(a+b) = (a+b)
1 COS-a
1+cos(a)
sin (a)
2 1+ cos(a)
sin(a) 1+ cos(a) {proved}
Some formulas :
* sin2A + cos?A = 1
* 1 + tan?A = sec?A =
*1 + cotA= cosec2A
* cos?A - sin?A = cos2A
* sin(A+B) = sinAcosB +
cosAsinB
* sin(A-B) = sinAcosB -
cosAsinB
* cos(A+B) = cosAsinB sinAsinB
* cos(A-B) = cosAsinB + sinAsinB
* tan(A + B)
tanA + tanB 1- tanAtanB
*tan(A-B) = tanA - tanB
1+tanAtanB
* sin20 = 2sin Øcos
* cos20 = 2cos2 0-1
* cos20 = 1 - 2 sin20