Math, asked by lopivv85, 1 year ago

Prove that

 {sin}^{ - 1} x =  {cos}^{ - 1} ( \sqrt{1 -  {x}^{2} } ) =  {tan}^{ - 1} ( \frac{x}{ \sqrt{1 -  {x}^{2} } } )

Answers

Answered by Anchalsinghrajput
2
heya your answer is here... hope it helps
Attachments:
Answered by Swarnimkumar22
12

  \bf \: \huge \:  {sin}^{ - 1} x =  {cos}^{ - 1} ( \sqrt{1 -  {x}^{2} } )

 \bf \: LHS \:  =  {sin}^{ - 1} x

 \bf \: Let \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {sin}^{ - 1} x =   \theta ..........(1)\\  \\  \\  \implies \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  x = sin \:  \theta

 \bf \: Now,  \: u sing  \: the \:  formula \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf \:  { \sin }^{2}  \theta \:  +  \cos {}^{2}  \theta \:  = 1}

 \bf \: Let's \:  put \:  the  \: value  \: of \: sin  \: \theta \:  \\  \\  \\  \implies \:  \:  {x}^{2}  +  {cos}^{2}  \theta \:  = 1 \\  \\  \\  \implies \:  \bf \:  \: cos \:  \theta \:  = 1 -  {x}^{2}  \\  \\  \\  \implies \bf \:  \theta \:  =   {cos}^{ - 1} \sqrt{1 -  {x}^{2} }  \\  \\  \\   \bf \: now \: we \: put \: the \: value \: of \:  \theta \: from \: the \: first \: equation \:  \\  \\  \\  \implies \:  \boxed{ \bf \:  { \sin}^{ - 1}x =  \cos {}^{ - 1}   \sqrt{1 -  {x}^{2} } }

  \huge \bf  \sin {}^{ - 1} x =  \tan {}^{ - 1} ( \frac{x}{ \sqrt{1 -  {x}^{2} } } )

 \bf \: LHS \:  =  {sin}^{ - 1} x

 \bf \: Again \:  let  \:  {sin}^{ - 1} x =  \theta \:  \:  \:  \:  \:  \:  \:  \: ....(1)

 \bf \: x \:  = sin \:  \theta

 \bf \: Now \:  using \:  the \:  formula \\  \\  \\  \bf \: cosec \:  \theta \:  =  \frac{1}{sin \:  \theta}

 \bf \: Now \:  put \:  the \:  value \:  of  \: sin  \:  \theta \\  \\  \\  \implies \:  \:  \bf \:  \: cosec \:  \theta \:  =  \frac{1}{x}

 \bf \: W e  \: know \:  that  \: formula \:  \:  \\  \\  \\   \boxed{1 +  { \cot }^{2}  \theta \:  =  {cosec \: }^{2}  \theta \: } \\  \\  \\ let \: put \: the \: value \: of \: cosec \:  \theta \\  \\  \\  \implies \: 1 +  {cot}^{2}  \:  \theta \:  = ( \frac{1}{x} ) {}^{2}  \\  \\  \\  \implies \:  \bf \:  \: cot \:  {}^{2}  \theta \:  =  \frac{1}{ {x}^{2} }  - 1 \\  \\  \\  \implies \:  \bf \: cot {}^{2}  \theta =  \frac{1 -  {x}^{2} }{ {x}^{2} }  \\  \\  \\  \implies \:  \bf \: cot \:  \theta \:  =  \sqrt{ \frac{1 -  {x}^{2} }{x} }  \:  \:  \\  \\  \\  \therefore \: tan \:  \theta =  \frac{x}{ \sqrt{1 -  {x}^{2} } }  \\  \\  \\  \implies \:  \bf \:  \theta \:  =  {tan}^{ - 1}  \frac{x}{ \sqrt{1 -  {x}^{2} } }  \\  \\  \\ let \: put \: the \: value \: of \:  \theta \: from \: the \: first \: equation \:  \\  \\  \\  \boxed{ \bf \:  {sin}^{ - 1}  =  {tan}^{ - 1}  \frac{x}{ \sqrt{1 -  {x}^{2} } } }

Similar questions