Prove that :
Answers
Answered by
0
Step-by-step explanation:
Maths
Prove that:
tanθ−secθ+1
secθ+tanθ−1
=
1−sinθ
cosθ
Put 1=sec
2
θ−tan
2
θ=(secθ−tanθ)(secθ+tanθ)
⟹
tanθ−secθ+1
secθ+tanθ−(secθ−tanθ)(secθ+tanθ)
⟹
(1−secθ+tanθ)
secθ+tanθ(1−secθ+tanθ)
⟹secθ+tanθ
Put secθ=
cosθ
1
and tanθ=
cosθ
sinθ
⟹
cosθ
1
+
cosθ
sinθ
Multiply and divide by 1−sinθ
⟹
cosθ(1−sinθ)
1−sin
2
θ
⟹
1−sinθ
cosθ
Answered by
1
Answer:
aapka ans yha hai bro
anssssssssssssssss
Attachments:
Similar questions