Math, asked by karthik3857, 9 months ago

prove that
 \sqrt{5}
is irrational.


Answers

Answered by llɱissMaɠiciaŋll
2

Step-by-step explanation:

Let's  \: prove  \: this  \: by  \: the \:  method  \: of  \: contradiction- </p><p></p><p>Say, √5  \: is  \: a \:  rational  \: number. ∴ It  \: can  \: be \:  expressed  \: in  \: the \:  form  \: p/q  \: where \:  p,q  \: are  \: co-prime \:  integers. \: </p><p></p><p>⇒√5=p/q</p><p></p><p> \: ⇒5=p²/q²   \: {Squaring  \: both \:  the \:  sides} \: </p><p></p><p>⇒5q²=p²   \: (1) \: </p><p></p><p>⇒p² \:  is  \: a \:  multiple  \: of  \: 5.  \: {Euclid's Division Lemma} \: </p><p></p><p>⇒ \: p  \: is  \: also  \: a  \: multiple  \: of \:  5.  \: {Fundamental  \: Theorem  \: of \:  arithmetic} \: </p><p></p><p> \: ⇒p=5m \: </p><p></p><p>⇒p²=25m²    \: (2) \: </p><p></p><p> \: From  \: equations \:  (1)  \: and \:  (2),  \: we  \: get, \: </p><p></p><p>5q²=25m²</p><p></p><p> \: ⇒q²=5m²</p><p></p><p> \: ⇒ \: q²  \: is  \: a  \: multiple  \: of  \: 5. \:  {Euclid's  \: Division  \: Lemma} \: </p><p></p><p>⇒ \: q  \: is  \: a  \: multiple  \: of  \: 5. \: {Fundamental  \:  \: Theorem  \: of \:  Arithmetic} \: </p><p></p><p> \: Hence,  \: p,q  \: have  \: a \:  common  \: factor  \: 5.  \: this \:  contradicts  \: that  \: they \:  are  \: co-primes. \:  Therefore, \:  p/q  \: is \:  not \:  a  \: rational  \: number.  \: This  \: proves  \: that  \: √5  \: is  \: an \:  irrational  \: number. </p><p></p><p> \: For  \: the  \: second  \: query,  \: as  \: we've  \:  proved  \: √5 \:  irrational.  \: Therefore  \: 2-√5  \: is \:  also \:  irrational  \: because  \: difference  \: of  \: a  \: rational  \: and  \: an  \: irrational  \: number  \: is  \: always  \: an \:  irrational  \: number.</p><p></p><p>

Similar questions